Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Eur J Inorg Chem ; 2019(8)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715932

RESUMO

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries. The reader may easily and quickly find from this minireview an appropriate neutron instrument for research. The instruments include single-crystal and powder diffractometers to determine structures, inelastic neutron scattering (INS) spectrometers to probe magnetic and vibrational excitations, and quasielastic neutron scattering (QENS) spectrometers to study molecular dynamics such as methyl rotation on ligands. Key and unique features of the diffraction and neutron spectroscopy that are relevant to inorganic chemistry are reviewed.

2.
Cell Rep ; 43(5): 114143, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38676924

RESUMO

Cellular retinaldehyde-binding protein (CRALBP) supports production of 11-cis-retinaldehyde and its delivery to photoreceptors. It is found in the retinal pigment epithelium (RPE) and Müller glia (MG), but the relative functional importance of these two cellular pools is debated. Here, we report RPE- and MG-specific CRALBP knockout (KO) mice and examine their photoreceptor and visual cycle function. Bulk visual chromophore regeneration in RPE-KO mice is 15-fold slower than in controls, accounting for their delayed rod dark adaptation and protection against retinal phototoxicity, whereas MG-KO mice have normal bulk visual chromophore regeneration and retinal light damage susceptibility. Cone pigment regeneration is significantly impaired in RPE-KO mice but mildly affected in MG-KO mice, disclosing an unexpectedly strong reliance of cone photoreceptors on the RPE-based visual cycle. These data reveal a dominant role for RPE-CRALBP in supporting rod and cone function and highlight the importance of RPE cell targeting for CRALBP gene therapies.

3.
Proc Natl Acad Sci U S A ; 121(11): e2316118121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442152

RESUMO

Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.


Assuntos
Fármacos Neuroprotetores , Distrofias Retinianas , Retinose Pigmentar , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones , Retinose Pigmentar/genética , Modelos Animais de Doenças , Células Germinativas , Receptores Nucleares Órfãos
4.
J Phys Chem Lett ; 14(44): 10080-10087, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37917420

RESUMO

Iodine oxides I2Oy (y = 4, 5, 6) crystallize into atypical structures that fall between molecular- and framework-base types and exhibit high reactivity in an ambient environment, a property highly desired in the so-called "agent defeat materials". Inelastic neutron scattering experiments were performed to determine the phonon density of states of the newly synthesized I2O5 and I2O6 samples. First-principles calculations were carried out for I2O4, I2O5, and I2O6 to predict their thermodynamic properties and phonon density of states. Comparison of the INS data with the Raman and infrared measurements as well as the first-principles calculations sheds light on their distinctive, anisotropic thermomechanical properties.

5.
Nat Commun ; 14(1): 5852, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730824

RESUMO

Understanding the nature and origin of collective excitations in materials is of fundamental importance for unraveling the underlying physics of a many-body system. Excitation spectra are usually obtained by measuring the dynamical structure factor, S(Q, ω), using inelastic neutron or x-ray scattering techniques and are analyzed by comparing the experimental results against calculated predictions. We introduce a data-driven analysis tool which leverages 'neural implicit representations' that are specifically tailored for handling spectrographic measurements and are able to efficiently obtain unknown parameters from experimental data via automatic differentiation. In this work, we employ linear spin wave theory simulations to train a machine learning platform, enabling precise exchange parameter extraction from inelastic neutron scattering data on the square-lattice spin-1 antiferromagnet La2NiO4, showcasing a viable pathway towards automatic refinement of advanced models for ordered magnetic systems.

6.
Nat Commun ; 14(1): 5182, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626027

RESUMO

The interplay between magnetism and electronic band topology enriches topological phases and has promising applications. However, the role of topology in magnetic fluctuations has been elusive. Here, we report evidence for topology stabilized magnetism above the magnetic transition temperature in magnetic Weyl semimetal candidate CeAlGe. Electrical transport, thermal transport, resonant elastic X-ray scattering, and dilatometry consistently indicate the presence of locally correlated magnetism within a narrow temperature window well above the thermodynamic magnetic transition temperature. The wavevector of this short-range order is consistent with the nesting condition of topological Weyl nodes, suggesting that it arises from the interaction between magnetic fluctuations and the emergent Weyl fermions. Effective field theory shows that this topology stabilized order is wavevector dependent and can be stabilized when the interband Weyl fermion scattering is dominant. Our work highlights the role of electronic band topology in stabilizing magnetic order even in the classically disordered regime.

7.
Structure ; 31(10): 1149-1157.e3, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37619561

RESUMO

Lymphocyte activation gene 3 protein (LAG3) is an inhibitory receptor that is upregulated on exhausted T cells in tumors. LAG3 is a major target for cancer immunotherapy with many anti-LAG3 antibodies in clinical trials. However, there is no structural information on the epitopes recognized by these antibodies. We determined the single-particle cryoEM structure of a therapeutic antibody (favezelimab) bound to LAG3 to 3.5 Å resolution, revealing that favezelimab targets the LAG3-binding site for MHC class II, its canonical ligand. The small size of the complex between the conventional (monovalent) Fab of favezelimab and LAG3 (∼100 kDa) presented a challenge for cryoEM. Accordingly, we engineered a bivalent version of Fab favezelimab that doubled the size of the Fab-LAG3 complex and conferred a highly identifiable shape to the complex that facilitated particle selection and orientation for image processing. This study establishes bivalent Fabs as new fiducial markers for cryoEM analysis of small proteins.


Assuntos
Anticorpos Monoclonais , Marcadores Fiduciais , Humanos , Anticorpos Monoclonais/metabolismo , Microscopia Crioeletrônica/métodos , Linfócitos T/metabolismo , Sítios de Ligação
8.
Cell Rep ; 42(8): 112982, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37585292

RESUMO

In daylight, demand for visual chromophore (11-cis-retinal) exceeds supply by the classical visual cycle. This shortfall is compensated, in part, by the retinal G-protein-coupled receptor (RGR) photoisomerase, which is expressed in both the retinal pigment epithelium (RPE) and in Müller cells. The relative contributions of these two cellular pools of RGR to the maintenance of photoreceptor light responses are not known. Here, we use a cell-specific gene reactivation approach to elucidate the kinetics of RGR-mediated recovery of photoreceptor responses following light exposure. Electroretinographic measurements in mice with RGR expression limited to either cell type reveal that the RPE and a specialized subset of Müller glia contribute both to scotopic and photopic function. We demonstrate that 11-cis-retinal formed through photoisomerization is rapidly hydrolyzed, consistent with its role in a rapid visual pigment regeneration process. Our study shows that RGR provides a pan-retinal sink for all-trans-retinal released under sustained light conditions and supports rapid chromophore regeneration through the photic visual cycle.


Assuntos
Epitélio Pigmentado da Retina , Retinaldeído , Animais , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/metabolismo , Pigmentos da Retina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuroglia/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo
9.
Nat Commun ; 14(1): 3134, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253731

RESUMO

Lanthanides in the trivalent oxidation state are typically described using an ionic picture that leads to localized magnetic moments. The hierarchical energy scales associated with trivalent lanthanides produce desirable properties for e.g., molecular magnetism, quantum materials, and quantum transduction. Here, we show that this traditional ionic paradigm breaks down for praseodymium in the tetravalent oxidation state. Synthetic, spectroscopic, and theoretical tools deployed on several solid-state Pr4+-oxides uncover the unusual participation of 4f orbitals in bonding and the anomalous hybridization of the 4f1 configuration with ligand valence electrons, analogous to transition metals. The competition between crystal-field and spin-orbit-coupling interactions fundamentally transforms the spin-orbital magnetism of Pr4+, which departs from the Jeff = 1/2 limit and resembles that of high-valent actinides. Our results show that Pr4+ ions are in a class on their own, where the hierarchy of single-ion energy scales can be tailored to explore new correlated phenomena in quantum materials.

10.
J Med Chem ; 66(4): 2744-2760, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36762932

RESUMO

Enveloped viruses depend on the host endoplasmic reticulum (ER) quality control (QC) machinery for proper glycoprotein folding. The endoplasmic reticulum quality control (ERQC) enzyme α-glucosidase I (α-GluI) is an attractive target for developing broad-spectrum antivirals. We synthesized 28 inhibitors designed to interact with all four subsites of the α-GluI active site. These inhibitors are derivatives of the iminosugars 1-deoxynojirimycin (1-DNJ) and valiolamine. Crystal structures of ER α-GluI bound to 25 1-DNJ and three valiolamine derivatives revealed the basis for inhibitory potency. We established the structure-activity relationship (SAR) and used the Site Identification by Ligand Competitive Saturation (SILCS) method to develop a model for predicting α-GluI inhibition. We screened the compounds against SARS-CoV-2 in vitro to identify those with greater antiviral activity than the benchmark α-glucosidase inhibitor UV-4. These host-targeting compounds are candidates for investigation in animal models of SARS-CoV-2 and for testing against other viruses that rely on ERQC for correct glycoprotein folding.


Assuntos
1-Desoxinojirimicina , Antivirais , COVID-19 , Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Animais , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/farmacologia , alfa-Glucosidases/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Retículo Endoplasmático/enzimologia , Glicoproteínas , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , SARS-CoV-2/metabolismo , Relação Quantitativa Estrutura-Atividade
11.
eNeuro ; 10(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823167

RESUMO

Rhodopsin is the critical receptor molecule which enables vertebrate rod photoreceptor cells to detect a single photon of light and initiate a cascade of molecular events leading to visual perception. Recently, it has been suggested that the F45L mutation in the transmembrane helix of rhodopsin disrupts its dimerization in vitro To determine whether this mutation of rhodopsin affects its signaling properties in vivo, we generated knock-in mice expressing the rhodopsin F45L mutant. We then examined the function of rods in the mutant mice versus wild-type controls, using in vivo electroretinography and transretinal and single cell suction recordings, combined with morphologic analysis and spectrophotometry. Although we did not evaluate the effect of the F45L mutation on the state of dimerization of the rhodopsin in vivo, our results revealed that F45L-mutant mice exhibit normal retinal morphology, normal rod responses as measured both in vivo and ex vivo, and normal rod dark adaptation. We conclude that the F45L mutation does not affect the signaling properties of rhodopsin in its natural setting.


Assuntos
Células Fotorreceptoras Retinianas Bastonetes , Rodopsina , Camundongos , Animais , Rodopsina/genética , Retina , Mutação/genética , Adaptação à Escuridão/genética
12.
Proc Natl Acad Sci U S A ; 120(2): e2215509119, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608295

RESUMO

Recently, Co-based honeycomb magnets have been proposed as promising candidate materials to host the Kitaev spin liquid (KSL) state. One of the front-runners is BaCo2(AsO4)2 (BCAO), where it was suggested that the exchange processes between Co2+ ions via the surrounding edge-sharing oxygen octahedra could give rise to bond-dependent Kitaev interactions. In this work, we present and analyze a comprehensive inelastic neutron scattering (INS) study of BCAO with fields in the honeycomb plane. Combining the constraints from the magnon excitations in the high-field polarized state and the inelastic spin structure factor measured in zero magnetic field, we examine two leading theoretical models: the Kitaev-type [Formula: see text] model and the XXZ[Formula: see text]model. We show that the existing experimental data can be consistently accounted for by the XXZ[Formula: see text]model but not by the [Formula: see text] model, and we discuss the implications of these results for the realization of a spin liquid phase in BCAO and more generally for the realization of the Kitaev model in cobaltates.

13.
Sci Adv ; 9(1): eadd5239, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598989

RESUMO

A large body of knowledge about magnetism is attained from models of interacting spins, which usually reside on magnetic ions. Proposals beyond the ionic picture are uncommon and seldom verified by direct observations in conjunction with microscopic theory. Here, using inelastic neutron scattering to study the itinerant near-ferromagnet MnSi, we find that the system's fundamental magnetic units are interconnected, extended molecular orbitals consisting of three Mn atoms each rather than individual Mn atoms. This result is further corroborated by magnetic Wannier orbitals obtained by ab initio calculations. It contrasts the ionic picture with a concrete example and presents an unexplored regime of the spin waves where the wavelength is comparable to the spatial extent of the molecular orbitals. Our discovery brings important insights into not only the magnetism of MnSi but also a broad range of magnetic quantum materials where structural symmetry, electron itinerancy, and correlations act in concert.

14.
PLoS One ; 17(8): e0272506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939447

RESUMO

Heterotrimeric G-protein transducin, Gt, is a key signal transducer and amplifier in retinal rod and cone photoreceptor cells. Despite similar subunit composition, close amino acid identity, and identical posttranslational farnesylation of their Gγ subunits, rods and cones rely on unique Gγ1 (Gngt1) and Gγc (Gngt2) isoforms, respectively. The only other farnesylated G-protein γ-subunit, Gγ11 (Gng11), is expressed in multiple tissues but not retina. To determine whether Gγ1 regulates uniquely rod phototransduction, we generated transgenic rods expressing Gγ1, Gγc, or Gγ11 in Gγ1-deficient mice and analyzed their properties. Immunohistochemistry and Western blotting demonstrated the robust expression of each transgenic Gγ in rod cells and restoration of Gαt1 expression, which is greatly reduced in Gγ1-deficient rods. Electroretinography showed restoration of visual function in all three transgenic Gγ1-deficient lines. Recordings from individual transgenic rods showed that photosensitivity impaired in Gγ1-deficient rods was also fully restored. In all dark-adapted transgenic lines, Gαt1 was targeted to the outer segments, reversing its diffuse localization found in Gγ1-deficient rods. Bright illumination triggered Gαt1 translocation from the rod outer to inner segments in all three transgenic strains. However, Gαt1 translocation in Gγ11 transgenic mice occurred at significantly dimmer background light. Consistent with this, transretinal ERG recordings revealed gradual response recovery in moderate background illumination in Gγ11 transgenic mice but not in Gγ1 controls. Thus, while farnesylated Gγ subunits are functionally active and largely interchangeable in supporting rod phototransduction, replacement of retina-specific Gγ isoforms by the ubiquitous Gγ11 affects the ability of rods to adapt to background light.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP , Células Fotorreceptoras Retinianas Bastonetes , Animais , Eletrorretinografia , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Camundongos , Camundongos Transgênicos , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transducina/genética , Transducina/metabolismo
15.
Adv Sci (Weinh) ; 9(25): e2202467, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798311

RESUMO

CrSBr is an air-stable two-dimensional (2D) van der Waals semiconducting magnet with great technological promise, but its atomic-scale magnetic interactions-crucial information for high-frequency switching-are poorly understood. An experimental study is presented to determine the CrSBr magnetic exchange Hamiltonian and bulk magnon spectrum. The A-type antiferromagnetic order using single crystal neutron diffraction is confirmed here. The magnon dispersions are also measured using inelastic neutron scattering and rigorously fit the excitation modes to a spin wave model. The magnon spectrum is well described by an intra-plane ferromagnetic Heisenberg exchange model with seven nearest in-plane exchanges. This fitted exchange Hamiltonian enables theoretical predictions of CrSBr behavior: as one example, the fitted Hamiltonian is used to predict the presence of chiral magnon edge modes with a spin-orbit enhanced CrSBr heterostructure.

16.
Invest Ophthalmol Vis Sci ; 63(8): 18, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35861670

RESUMO

Purpose: Light detection in retinal rod photoreceptors is initiated by activation of the visual pigment rhodopsin. A critical, yet often-overlooked, step enabling efficient perception of light is rhodopsin dephosphorylation mediated by protein phosphatase 2A (PP2A). PP2A deficiency has been reported to impair rhodopsin regeneration after phosphorylation by G protein receptor kinase 1 (GRK1) and binding of arrestin (Arr1), thereby delaying rod dark adaptation. However, its effects on the viability of photoreceptors in the absence of GRK1 and Arr1 remain unclear. Here, we investigated the effects of PP2A deficiency in the absence of GRK1 or Arr1, both of which have been implicated in Oguchi disease, a form of night blindness. Methods: Rod-specific mice lacking the predominant catalytic Cα-subunit of PP2A were crossed with the Grk1-/- or Arr1-/- strains to obtain double knockout lines. Rod photoreceptor viability was analyzed in histological cross-sections of the retina stained with hematoxylin and eosin, and rod function was evaluated by ex vivo electroretinography. Results: PP2A deficiency alone did not impair photoreceptor viability up to 12 months of age. Retinal degeneration was more pronounced in rods lacking GRK1 compared to rods lacking Arr1, and degeneration was accelerated in both Grk1-/- or Arr1-/- strains where PP2A was also deleted. In Arr1-/- mice, rod maximal photoresponse amplitudes were reduced by 80% at 3 months, and this diminution was enhanced further with concomitant PP2A deficiency. Conclusions: These results suggest that although PP2A is not required for the survival of rods, its deletion accelerates the degeneration induced by the absence of either GRK1 or Arr1.


Assuntos
Arrestina , Degeneração Retiniana , Animais , Arrestina/metabolismo , Receptor Quinase 1 Acoplada a Proteína G/genética , Camundongos , Camundongos Knockout , Proteína Fosfatase 2 , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Rodopsina/metabolismo
17.
Nat Commun ; 13(1): 4037, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821370

RESUMO

Spin and lattice are two fundamental degrees of freedom in a solid, and their fluctuations about the equilibrium values in a magnetic ordered crystalline lattice form quasiparticles termed magnons (spin waves) and phonons (lattice waves), respectively. In most materials with strong spin-lattice coupling (SLC), the interaction of spin and lattice induces energy gaps in the spin wave dispersion at the nominal intersections of magnon and phonon modes. Here we use neutron scattering to show that in the two-dimensional (2D) van der Waals honeycomb lattice ferromagnetic CrGeTe3, spin waves propagating within the 2D plane exhibit an anomalous dispersion, damping, and breakdown of quasiparticle conservation, while magnons along the c axis behave as expected for a local moment ferromagnet. These results indicate the presence of dynamical SLC arising from the zero-temperature quantum fluctuations in CrGeTe3, suggesting that the observed in-plane spin waves are mixed spin and lattice quasiparticles fundamentally different from pure magnons and phonons.

18.
FASEB J ; 36(7): e22390, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665537

RESUMO

The daylight and color vision of diurnal vertebrates depends on cone photoreceptors. The capability of cones to operate and respond to changes in light brightness even under high illumination is attributed to their fast rate of recovery to the ground photosensitive state. This process requires the rapid replenishing of photoisomerized visual chromophore (11-cis-retinal) to regenerate cone visual pigments. Recently, several gene candidates have been proposed to contribute to the cone-specific retinoid metabolism, including acyl-CoA wax alcohol acyltransferase 2 (AWAT2, aka MFAT). Here, we evaluated the role of AWAT2 in the regeneration of visual chromophore by the phenotypic characterization of Awat2-/- mice. The global absence of AWAT2 enzymatic activity did not affect gross retinal morphology or the rate of visual chromophore regeneration by the canonical RPE65-dependent visual cycle. Analysis of Awat2 expression indicated the presence of the enzyme throughout the murine retina, including the retinal pigment epithelium (RPE) and Müller cells. Electrophysiological recordings revealed reduced maximal rod and cone dark-adapted responses in AWAT2-deficient mice compared to control mice. While rod dark adaptation was not affected by the lack of AWAT2, M-cone dark adaptation both in isolated retina and in vivo was significantly suppressed. Altogether, these results indicate that while AWAT2 is not required for the normal operation of the canonical visual cycle, it is a functional component of the cone-specific visual chromophore regenerative pathway.


Assuntos
Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Acil Coenzima A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Camundongos , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinaldeído/metabolismo
19.
Biochemistry (Mosc) ; 87(3): 259-268, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35526853

RESUMO

In this work, we developed the method of preparative production of recombinant human cyclophilin A (rhCypA) in Escherichia coli. The full-length cDNA encoding the gene of human CypA (CYPA) was amplified by RT-PCR from the total RNA of human T cell lymphoma Jurkat. The nucleotide sequence of CYPA was optimized to provide highly effective translation in E. coli. Recombinant CYPA DNA was cloned into the pET22b(+) vector, and the resulted expression plasmid was used to transform E. coli strain BL21(DE3)Gold. The recombinant producer strain of E. coli produced soluble rhCypA in the bacterial cytoplasm. The synthesis efficiency of rhCypA was up to 50% of the total cell protein allowing to produce rhCypA in the amount of 1 g per liter of the culture. We also developed the method for rhCypA purification, consisting of a single-step tandem anion exchange chromatography on DEAE- and Q-Sepharose columns. The protein purity was 95% according to electrophoresis (SDS-PAGE), and its contamination with endotoxin did not exceed 0.05 ng per 1 mg of the protein that met the requirements of European pharmacopoeia for injectable preparations. The produced recombinant protein exhibited functional features of native CypA, i.e., isomerase activity and chemokine activity as assessed by stimulation of migration of mouse bone marrow hematopoietic stem cells in vivo. The generated producer strain of E. coli is a super-producer and could be used for large-scale experimental studies of rhCypA and in its preclinical and clinical trials as a drug.


Assuntos
Ciclofilina A , Animais , Ciclofilina A/biossíntese , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Humanos , Camundongos , Plasmídeos , Proteínas Recombinantes/sangue
20.
Biochemistry ; 61(10): 822-832, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35476408

RESUMO

All viruses depend on host cell proteins for replication. Denying viruses' access to the function of critical host proteins can result in antiviral activity against multiple virus families. In particular, small-molecule drug candidates which inhibit the α-glucosidase enzymes of the endoplasmic reticulum (ER) translation quality control (QC) pathway have demonstrated broad-spectrum antiviral activities and low risk for development of viral resistance. However, antiviral drug discovery focused on the ERQC enzyme α-glucosidase I (α-GluI) has been hampered by difficulties in obtaining crystal structures of complexes with inhibitors. We report here the identification of an orthologous enzyme from a thermophilic fungus, Chaetomium thermophilum (Ct), as a robust surrogate for mammalian ER α-GluI and a platform for inhibitor design. Previously annotated only as a hypothetical protein, the Ct protein was validated as a bona fide α-glucosidase by comparing its crystal structure to that of mammalian α-GluI, by demonstrating enzymatic activity on the unusual α-d-Glcp-(1 → 2)-α-d-Glcp-(1 → 3) substrate glycan, and by showing that well-known inhibitors of mammalian α-GluI (1-DNJ, UV-4, UV-5) also inhibit Ct α-GluI. Crystal structures of Ct α-GluI in complex with three such inhibitors (UV-4, UV-5, EB-0159) revealed extensive interactions with all four enzyme subsites and provided insights into the catalytic mechanism. Identification of ER Ct α-GluI as a surrogate for mammalian α-GluI will accelerate the structure-guided discovery of broad-spectrum antivirals. This study also highlights Ct as a source of thermostable eukaryotic proteins, such as ER α-Glu I, that lack orthologs in bacterial or archaeal thermophiles.


Assuntos
Vírus , alfa-Glucosidases , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Retículo Endoplasmático/metabolismo , Fungos/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Mamíferos/metabolismo , Vírus/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA