Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Z Med Phys ; 33(4): 463-478, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36038432

RESUMO

PURPOSE: To employ the microDiamond and the microSilicon detector (mDD and mSD, both PTW-Freiburg, Germany) to determine the dose rate around a HDR 192Ir brachytherapy source (model mHDR-v2r, Elekta AB, Sweden). METHODS: The detectors were calibrated with a 60Co beam at the PTW Calibration Laboratory. Measurements around the 192Ir source were performed inside a PTW MP3 water phantom. The detectors were placed at selected points of measurement at radial distances r, ranging from 0.5 to 10 cm, keeping the polar angle θ = 90°. Additional measurements were performed with the mSD at fixed distances r = 1, 3 and 5 cm, with θ varying from 0 to 150°, 0 to 166°, and 0 to 168°, respectively. The corresponding mDD readings were already available from a previous work (Rossi et al., 2020). The beam quality correction factor of both detectors, as well as a phantom effect correction factor to account for the difference between the experimental geometry and that assumed in the TG-43 formalism, were determined using the Monte Carlo (MC) toolkit EGSnrc. The beam quality correction factor was factorized into energy dependence and volume-averaging correction factors. Using the abovementioned MC-based factors, the dose rate to water at the different points of measurement in TG-43 conditions was obtained from the measured readings, and was compared to the dose rate calculated according to the TG-43 formalism. RESULTS: The beam quality correction factor was considerably closer to unity for the mDD than for the mSD. The energy dependence of the mDD showed a very weak radial dependence, similar to the previous findings showing a weak angular dependence as well (Rossi et al., 2020). Conversely, the energy dependence of the mSD decreased significantly with increasing distances, and also showed a considerably more pronounced angular dependence, especially for the smallest angles. The volume-averaging showed a similar radial dependence for both detectors: the correction had a maximal impact at 0.5 cm and then approached unity for larger distances, as expected. Concerning the angular dependence, the correction for the mSD was also similar to the one previously determined for the mDD (Rossi et al., 2020): a maximal impact was observed at θ = 0°, with values tending to unity for larger angles. In general, the volume-averaging was less pronounced for the mSD due to the smaller sensitive volume radius. After the application of the MC-based factors, differences between mDD dose rate measurements and TG-43 dose rate calculations ranged from -2.6% to +4.3%, with an absolute average difference of 1.0%. For the mSD, the differences ranged from -3.1% to +5.2%, with an absolute average difference of 1.0%. For both detectors, all differences but one were within the combined uncertainty (k = 2). The differences of the mSD from the mDD ranged from -3.9% to +2.6%, with the vast majority of them being within the combined uncertainty (k = 2). For θ ≠ 0°, the mDD was able to provide sufficiently accurate results even without the application of the MC-based beam quality correction factor, with differences to the TG-43 dose rate calculations from -1.9% to +3.4%, always within the combined uncertainty (k = 2). CONCLUSION: The mDD and the mSD showed consistent results and appear to be well suitable for measuring the dose rate around HDR 192Ir brachytherapy sources. MC characterization of the detectors response is needed to determine the beam quality correction factor and to account for energy dependence and/or volume-averaging, especially for the mSD. Our findings support the employment of the mDD and mSD for source QA, TPS verification and TG-43 parameters determination.


Assuntos
Braquiterapia , Braquiterapia/métodos , Método de Monte Carlo , Imagens de Fantasmas , Água , Calibragem , Radiometria
2.
Med Phys ; 47(11): 5838-5851, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32970875

RESUMO

PURPOSE: To investigate the suitability of the microDiamond detector (mDD) type 60019 (PTW-Freiburg, Germany) to measure the anisotropy function F(r,θ) of High Dose Rate (HDR) 192 Ir brachytherapy sources. METHODS: The HDR 192 Ir brachytherapy source, model mHDR-v2r (Elekta AB, Sweden), was placed inside a water tank within a 4F plastic needle. Four mDDs (mDD1, mDD2, mDD3, and mDD4) were investigated. Each mDD was placed laterally with respect to the source, and measurements were performed at radial distances r = 1 cm, 3 and 5 cm, and polar angles θ from 0° to 168°. The Monte Carlo (MC) system EGSnrc was used to simulate the measurements and to calculate phantom effect, energy dependence and volume-averaging correction factors. F(r,θ) was determined according to TG-43 formalism from the detector reading corrected with the MC-based factors and compared to the consensus anisotropy function CON F(r,θ). RESULTS: At 1 cm, the differences between measurements and MC simulations ranged from -0.8% to +0.8% for θ = 0° and from -2.1% to + 2.3% for θ ≠ 0°. At 3 and 5 cm, the differences ranged from +1.4% to +3.9% for θ = 0°, and from -0.4% to +2.9% for θ ≠ 0°. All differences were within the uncertainties (k = 2). At small angles, the phantom effect correction was up to -1.9%. This effect was mainly caused by the air between source and needle tip. The energy correction was angle-independent everywhere. For small angles at 1 cm, the volume-averaging correction was up to -2.9% and became less important for larger angles and distances. The differences of the measured F(r,θ) corrected with the MC-based factors to CON F(r,θ) ranged from -1.0% to +3.4% for mDD1, -2.2% to +4.2% for mDD2, -2.5% to +4.0% for mDD3, and -2.6% to +3.4% for mDD4. All differences were within the uncertainties (k = 2) except one at (3 cm, 0°). For all the mDDs, F(r,0°) was always higher than CON F(r,0°), with average differences of +3.1% (1 cm), +3.6% (3 cm), and +1.9% (5 cm). The inter-detector variability was within 2.9% (1 cm), 1.8% (3 cm), and 3.4% (5 cm). CONCLUSIONS: A reproducible method and experimental setup were presented for measuring and validating F(r,θ) of an HDR 192 Ir brachytherapy source in a water phantom using the mDD. The phantom effect and the volume-averaging need to be taken into account, especially for the smaller distances and angles. Good agreement to CON F(r,θ) was obtained. The discrepancies at (1 cm, 0°), accurately predicted by the MC results, may suggest a reconsideration of CON F(r,θ), at least for this position. The slight overestimations at (3 cm,0°) and (5 cm,0°), both in comparison to CON F(r,θ) and MC results, may be due to an underestimation of the air volume between source and needle tip, dark current, intrinsic over-response of the mDDs, or radiation-induced charge imbalance in the detector's components. The results indicate that the mDD is a valuable tool for measurements with HDR 192 Ir brachytherapy sources and support its employment for the determination and validation of TG-43 parameters of such sources.


Assuntos
Braquiterapia , Anisotropia , Alemanha , Método de Monte Carlo , Radiometria , Dosagem Radioterapêutica , Suécia
3.
Z Med Phys ; 29(3): 272-281, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30340801

RESUMO

The purpose of this study was to investigate the suitability of the microDiamond detector (mDD) type 60019 (PTW-Freiburg, Germany) for radial dose function measurements with High Dose Rate (HDR) 192Ir brachytherapy sources. An HDR 192Ir source model mHDR v2r (Nucletron BV, an Elekta company, The Netherlands) was placed at the centre of a MP3 water phantom (PTW-Freiburg, Germany) within a 4F needle. Three mDDs were employed to measure the radial dose function of the source by acquiring profiles along the source transverse axis. Meanwhile, the experimental setup was simulated using the Monte Carlo (MC) code MCNP6.1™ (Los Alamos National Laboratory, USA) to calculate phantom-size, absorbed-dose energy dependence and volume averaging correction factors. After applying the correction factors, the radial dose function gL(r) for the line source approximation was calculated as defined in the TG-43 formalism at radial distances from 0.5cm to 10cm and compared to the consensus gL(r) (ESTRO and AAPM). The percentage differences to the consensus gL(r) for all the three mDDs were from -2.3% to +1.4% for distances r≤5cm and -6.2% to +2.6% for larger distances. These results indicate the suitability of the mDD for HDR brachytherapy measurements when all required corrections are applied.


Assuntos
Braquiterapia , Diamante , Radioisótopos de Irídio/uso terapêutico , Microtecnologia/instrumentação , Método de Monte Carlo , Radiometria/instrumentação , Irídio , Isótopos , Imagens de Fantasmas , Dosagem Radioterapêutica , Incerteza
4.
J Contemp Brachytherapy ; 8(3): 241-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27504134

RESUMO

PURPOSE: We present a novel method for treatment of locally recurrent prostate cancer (PCa) following radiation therapy: focal, multimodal image guided high-dose-rate (HDR) brachytherapy. MATERIAL AND METHODS: We treated two patients with recurrent PCa after primary (#1) or adjuvant (#2) external beam radiation therapy. Multiparametric magnetic resonance imaging (mpMRI), choline, positron emission tomography combined with computed tomography (PET/CT), or prostate-specific membrane antigen (PSMA)-PET combined with CT identified a single intraprostatic lesion. Positron emission tomography or magnetic resonance imaging - transrectal ultrasound (MRI-TRUS) fusion guided transperineal biopsy confirmed PCa within each target lesion. We defined a PET and mpMRI based gross tumor volume (GTV). A 5 mm isotropic margin was applied additionally to each lesion to generate a planning target volume (PTV), which accounts for technical fusion inaccuracies. A D90 of 18 Gy was intended in one fraction to each PTV using ultrasound guided HDR brachytherapy. RESULTS: Six month follow-up showed adequate prostate specific antygen (PSA) decline in both patients (ΔPSA 83% in patient 1 and ΔPSA 59.3% in patient 2). Follow-up 3-tesla MRI revealed regressive disease in both patients and PSMA-PET/CT showed no evidence of active disease in patient #1. No acute or late toxicities occurred. CONCLUSIONS: Single fraction, focal, multimodal image guided salvage HDR brachytherapy for recurrent prostate cancer is a feasible therapy for selected patients with single lesions. This approach has to be evaluated in larger clinical trials.

5.
Z Med Phys ; 25(2): 176-85, 2015 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-25791738

RESUMO

In brachytherapy dosimetric measurements are difficult due to the inherent dose-inhomogenieties. Typically in routine clincal practice only the nominal dose rate is determined for computer controlled afterloading systems. The region of interest lies close to the source when measuring the spatial dose distribution. In this region small errors in the postioning of the detector, and its finite size, lead to large measurement uncertainties that exacerbate the routine dosimetric control of the system in the clinic. The size of the measurement chamber, its energy dependence, and the directional dependence of the measurement apparatus are the factors which have a significant influence on dosimetry. Although ionisation chambers are relatively large, they are employed since similar chambers are commonly found on clincal brachytherapy units. The dose is determined using DIN 6800 [11] since DIN 6809-2 [12], which deals with dosimetry in brachytherapy, is antiquated and is currently in the process of revision. Further information regarding dosimetry for brachytherapy can be found in textbooks [1] and [2]. The measurements for this work were performed with a HDR (High-Dose-Rate) (192)Ir source, type mHDR V2, and a Microselectron Afterloader V2 both from Nucletron/Elekta. In this work two dosimetric procedures are presented which, despite the aforemention difficulties, should assist in performing checks of the proper operation of the system. The first is a system check that measures the dose distribution along a line and is to be performed when first bringing the afterloader into operation, or after significant changes to the system. The other is a dosimetric constancy check, which with little effort can be performed monhtly or weekly. It simultaneously verifies the positioning of the source at two positions, the functionality of the system clock and the automatic re-calculation of the source activity.


Assuntos
Braquiterapia/normas , Imagens de Fantasmas , Guias de Prática Clínica como Assunto , Radioisótopos/análise , Radiometria/métodos , Radiometria/normas , Algoritmos , Calibragem , Alemanha , Controle de Qualidade , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA