RESUMO
The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.
RESUMO
Jupiter hosts the most hazardous radiation belts of our solar system that, besides electrons and protons, trap an undetermined mix of heavy ions. The details of this mix are critical to resolve because they can reveal the role of Jupiter's moons relative to other less explored energetic ion sources. Here, we show that with increasing energy and in the vicinity of Jupiter's moon Amalthea, the belts' ion composition transitions from sulfur- to oxygen-dominated due to a local source of â³50 MeV/nucleon oxygen. Contrary to Earth's and Saturn's radiation belts, where their most energetic ions are supplied through atmospheric and ring interactions with externally accelerated cosmic rays, Jupiter's magnetosphere powers this oxygen source internally. The underlying source mechanism, involving either Jovian ring spallation by magnetospheric sulfur or stochastic oxygen heating by low-frequency plasma waves, puts Jupiter's ion radiation belt in the same league with that of astrophysical particle accelerators.