Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ther Drug Monit ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723153

RESUMO

BACKGROUND: Mycophenolic acid is widely used to treat lupus nephritis (LN). However, it exhibits complex pharmacokinetics with large interindividual variability. This study aimed to develop a population pharmacokinetic (popPK) model and a 3-sample limited sampling strategy (LSS) to optimize therapeutic drug monitoring in Indian patients with LN. METHODS: Five blood samples from each LN patient treated with mycophenolic acid were collected at steady-state predose and 1, 2, 4, and 6 hours postdose. Demographic parameters were tested as covariates to explain interindividual variability. PopPK analysis was performed using Monolix and the stochastic approximation expectation-maximization algorithm. An LSS was derived from 500 simulated pharmacokinetic (PK) profiles using maximum a posteriori Bayesian estimation to estimate individual PK parameters and area under the curve (AUC). The LSS-calculated AUC was compared with the AUC calculated using the trapezoidal rule and all the simulated samples. RESULTS: A total of 51 patients were included in this study. Based on the 245 mycophenolic acid concentrations, a 1-compartmental model with double absorption using gamma distributions best fitted the data. None of the covariates improved the model significantly. The model was internally validated using diagnostic plots, prediction-corrected visual predictive checks, and bootstrapping. The best LSS included samples at 1, 2, and 4 hours postdose and exhibited good performances in an external dataset (root mean squared error, 21.9%; mean bias, -4.20%). CONCLUSIONS: The popPK model developed in this study adequately estimated the PK of mycophenolic acid in adult Indian patients with LN. This simple LSS can optimize TDM based on the AUC in routine practice.

2.
Eur J Clin Pharmacol ; 80(1): 83-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897528

RESUMO

INTRODUCTION: Mycophenolic acid (MPA), the active metabolite of mycophenolate mofetil (MMF), is widely used in the treatment of systemic lupus erythematosus (SLE). It has been shown that its therapeutic drug monitoring based on the area under the curve (AUC) improves treatment efficacy. MPA exhibits a complex bimodal absorption, and a double gamma distribution model has been already proposed in the past to accurately describe this phenomenon. These previous population pharmacokinetics models (POPPK) have been developed using iterative two stage Bayesian (IT2B) or non-parametric adaptive grid (NPAG) methods. However, non-linear mixed effect (NLME) approaches based on stochastic approximation expectation-maximization (SAEM) algorithms have never been published so far for this particular model. The objectives of this study were (i) to implement the double absorption gamma model in Monolix, (ii) to compare different absorption models to describe the pharmacokinetics of MMF, and (iii) to develop a limited sampling strategy (LSS) to estimate AUC in pediatric SLE patients. MATERIAL AND METHODS: A data splitting of full pharmacokinetic profiles sampled in 67 children extracted either from the expert system ISBA (n = 34) or the hospital Saint Louis (n = 33) was performed into train (75%) and test (25%) sets. A POPPK was developed for MPA in the train set using a NLME and the SAEM algorithm and different absorption models were implemented and compared (first order, transit, or simple and double gamma). The best limited sampling strategy was then determined in the test set using a maximum-a-posteriori Bayesian method to estimate individual PK parameters and AUC based on three blood samples compared to the reference AUC calculated using the trapezoidal rule applied on all samples and performances were assessed in the test set. RESULTS: Mean patient age and dose was 13 years old (5-18) and 18.1 mg/kg (7.9-47.6), respectively. MPA concentrations (764) from 107 occasions were included in the analysis. A double gamma absorption with a first-order elimination from the central compartment best fitted the data. The optimal LSS with samples at 30 min, 2 h, and 3 h post-dose exhibited good performances in the test set (mean bias - 0.32% and RMSE 21.0%). CONCLUSION: The POPPK developed in this study adequately estimated the MPA AUC in pediatric patients with SLE based on three samples. The double absorption gamma model developed with the SAEM algorithm showed very accurate fit and reduced computation time.


Assuntos
Lúpus Eritematoso Sistêmico , Ácido Micofenólico , Humanos , Criança , Adolescente , Imunossupressores/farmacocinética , Teorema de Bayes , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Área Sob a Curva , Convulsões/tratamento farmacológico , Algoritmos
3.
Comput Methods Programs Biomed ; 242: 107860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844488

RESUMO

BACKGROUND AND OBJECTIVE: In silico methods are gaining attention for predicting drug-induced Torsade de Pointes (TdP) in different stages of drug development. However, many computational models tended not to account for inter-individual response variability due to demographic covariates, such as sex, or physiologic covariates, such as renal function, which may be crucial when predicting TdP. This study aims to compare the effects of drugs in male and female populations with normal and impaired renal function using in silico methods. METHODS: Pharmacokinetic models considering sex and renal function as covariates were implemented from data published in pharmacokinetic studies. Drug effects were simulated using an electrophysiologically calibrated population of cellular models of 300 males and 300 females. The population of models was built by modifying the endocardial action potential model published by O'Hara et al. (2011) according to the experimentally measured gene expression levels of 12 ion channels. RESULTS: Fifteen pharmacokinetic models for CiPA drugs were implemented and validated in this study. Eight pharmacokinetic models included the effect of renal function and four the effect of sex. The mean difference in action potential duration (APD) between male and female populations was 24.9 ms (p<0.05). Our simulations indicated that women with impaired renal function were particularly susceptible to drug-induced arrhythmias, whereas healthy men were less prone to TdP. Differences between patient groups were more pronounced for high TdP-risk drugs. The proposed in silico tool also revealed that individuals with impaired renal function, electrophysiologically simulated with hyperkalemia (extracellular potassium concentration [K+]o = 7 mM) exhibited less pronounced APD prolongation than individuals with normal potassium levels. The pharmacokinetic/electrophysiological framework was used to determine the maximum safe dose of dofetilide in different patient groups. As a proof of concept, 3D simulations were also run for dofetilide obtaining QT prolongation in accordance with previously reported clinical values. CONCLUSIONS: This study presents a novel methodology that combines pharmacokinetic and electrophysiological models to incorporate the effects of sex and renal function into in silico drug simulations and highlights their impact on TdP-risk assessment. Furthermore, it may also help inform maximum dose regimens that ensure TdP-related safety in a specific sub-population of patients.


Assuntos
Arritmias Cardíacas , Torsades de Pointes , Feminino , Humanos , Masculino , Sulfonamidas/efeitos adversos , Torsades de Pointes/induzido quimicamente , Potássio/efeitos adversos , Proteínas de Ligação a DNA
4.
Ther Drug Monit ; 45(2): 259-264, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730982

RESUMO

ABSTRACT: Tobramycin is widely used to treat pulmonary exacerbations of cystic fibrosis. Height has been previously found to be significantly more predictive of tobramycin pharmacokinetics than body weight. This study aimed to develop a height-based initial dosing nomogram and evaluate its performance in peak concentration (Cmax) precision relative to standard and fixed dosing. Monte Carlo simulations were performed to develop a nomogram representing the doses required to reach Cmax targets at different heights. Cmax data observed at 2 clinical centers [McGill University Health Centre (MUHC) and Institut universitaire de cardiologie et pneumologie de Québec (IUCPQ-UL)] were compared with population-predicted Cmax using the doses derived from the nomogram alongside a fixed dose. Height-based dosing resulted in significantly less variable-predicted Cmax values [coefficient of variation (CV) MUHC = 15.7% and IUCPQ-UL = 10.8%] than the Cmax values observed in clinical practice (CV MUHC = 30.0% and CV IUCPQ-UL = 26.9%) and predicted Cmax values obtained from a fixed dose (CV MUHC = 21.2% and CV IUCPQ-UL = 16.3%). An initial dosing nomogram was developed to help reduce pharmacokinetic variability in the observed Cmax. More precise dosing would allow for better clinical outcomes in adult patients with cystic fibrosis.


Assuntos
Fibrose Cística , Tobramicina , Humanos , Adulto , Antibacterianos/farmacocinética , Fibrose Cística/tratamento farmacológico , Nomogramas , Peso Corporal
5.
Ther Drug Monit ; 45(2): 251-258, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36070759

RESUMO

BACKGROUND: Acute pulmonary exacerbations (APEs) in patients with adult cystic fibrosis (CF) are treated with a beta-lactam and an aminoglycoside for activity against Pseudomonas aeruginosa (PA). Emerging drug resistance and changing pharmacokinetic profile in an aging population involve a reevaluation of tobramycin dosing recommendations. The objective of this study was to develop a population pharmacokinetic model and establish optimal dosing recommendations for tobramycin using Monte Carlo simulations. METHODS: This retrospective clinical study and data collection were performed at the CF center of the McGill University Health Center (MUHC), Canada. Model development and simulations were performed using a nonlinear mixed-effect modeling approach (NONMEM, version 7.4.2). The ratios of maximal concentration (C max ) to the minimal inhibitory concentration (MIC) (C max /MIC ≥8 and ≥10) and area under the curve (AUC) to the MIC (AUC/MIC ≥70 and ≥100) were evaluated. RESULTS: Adult patients with CF (n = 51) treated with tobramycin were included in the study. Plasma concentrations of tobramycin were obtained for 699 samples from the MUHC database. The two-compartmental model best described the pharmacokinetics of tobramycin. The association of patient height with the central volume of distribution significantly improved this model. Height, rather than weight, induced the best reduction in objective function. According to simulations, doses between 3.4 mg/cm and 4.4 mg/cm were necessary to achieve C max /MIC values of ≥8 and ≥10, respectively. However, higher doses were required to achieve the AUC/MIC targets. CONCLUSIONS: This study demonstrated that height of the patients seems to be more suitable than their weight for dosing adjustments in adult patients with CF. According to this model, initial doses of tobramycin between 3.4 and 4.4 mg/cm should be recommended for patients with a median height of 164 cm and weight of 55 kg to achieve the target plasma concentrations.


Assuntos
Fibrose Cística , Tobramicina , Humanos , Adulto , Idoso , Fibrose Cística/tratamento farmacológico , Fibrose Cística/complicações , Estudos Retrospectivos , Antibacterianos , Área Sob a Curva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA