Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39195015

RESUMO

Hydrogels have the ability to retain large amounts of water within their three-dimensional polymer matrices. These attractive materials are used in medicine and the food industry; they can serve as the basis for structured food products, additives, and various ingredients. Gelatin is one of widely used biopolymers to create hydrogels that exhibit biocompatibility and tunable rheological properties. In this study, we offer a comparative analysis of rheological properties of gelatin-based hydrogels (C = 6.67%), including mammalian gelatins from bovine and porcine skins and fish gelatins from commercial samples and samples extracted from Atlantic cod skin. Mammalian gelatins provide high strength and elasticity to hydrogels. Their melting point lies in the range from 22 to 34 °C. Fish gelatin from cod skin also provides a high strength to hydrogels. Commercial fish gelatin forms weak gels exhibiting low viscoelastic properties and strength, as well as low thermal stability with a melting point of 7 °C. Gelatins were characterized basing on the analysis of amino acid composition, molecular weight distribution, and biopolymer secondary structure in gels. Our research provides a unique rheological comparison of mammalian and fish gelatin hydrogels as a tool for the re-evaluation of fish skin gelatin produced through circular processes.

2.
Polymers (Basel) ; 15(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242828

RESUMO

The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate and gelatin (Z = 0.01-1.00). The boundary pH values determining the formation and dissociation of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes occurs in the transition from neutral (pHc) to acidic (pHφ1) conditions. Insoluble complexes formed below pHφ1 separate into distinct phases, and the phenomenon of complex coacervation is thus observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then, visible aggregation occurs, and dissociation of the complexes is observed when the next boundary, pHφ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc, рHφ1, рHopt, and рHφ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is observed at NaCl and CaCl2 concentrations of 50 to 200 mM.

3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430697

RESUMO

Protein isolates were obtained from marine hydrobionts by the method of isoelectric precipitation with a preliminary stage of protein alkaline solubilisation. Northern blue whiting was chosen as the raw material. Various technological modes of the solubilisation stage were used: the temperature of the reaction mixture was 4 or 20 °C, and the duration was 4 or 16 h. The yield of the product was 44-45% with a high content of the main component (protein) equal to about 95%. It has been shown that a decrease in the temperature and duration of the alkaline solubilisation stage provides the production of protein isolates with good technological properties, a low solubility, high swelling and high emulsifying ability, necessary for its use in the production of functional food products, including therapeutic and prophylactic effects. These technological properties are explained by a change in the composition and structure of the protein, the change being an increase in the content of essential amino acids and the proportion of α-helices in the polypeptide chain. The main patterns obtained will be used to obtain protein isolates from marine molluscs.


Assuntos
Aminoácidos Essenciais , Proteínas , Temperatura , Proteínas/química , Solubilidade
4.
Polymers (Basel) ; 14(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215662

RESUMO

In recent years, there has been increased interest in the production of gelatin from alternative sources, such as raw fish materials. Traditionally, gelatin is obtained using an acidic or alkaline treatment. However, these methods have some disadvantages, such as the long times for processing raw materials and the use of large amounts of water and chemicals. Furthermore, milder processing regimes are required for producing fish gelatin. Enzymes could be the solution for improving the technology of fish gelatin production, due to their specificity and ability to increase the rate of collagen digestion. In this work, samples of gelatin from cod skin were obtained using enzymes of bacterial (protosubtilin) and animal (pancreatin) origins. The use of enzymes reduced the duration of extraction by 40%, and the yield of the final product was increased from 51% to 58-60%. The dependence of the contents of the main components of the secondary structure of gelatin and its rheological and thermal properties on molecular weight was also established. In this study, the gelatins obtained without enzymes and with protosubtilin were shown to have the most desirable characteristics, namely of the highest molecular weights and the highest proportion of ordered structures.

5.
Polymers (Basel) ; 13(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673621

RESUMO

Polyelectrolyte complexes of sodium alginate and gelatin obtained from cold-blooded fish were studied for potential application as structure-forming agents in food hydrogels. The mass ratio of sodium alginate to gelatin plays a decisive role in the sol-gel transition and rheological behavior of the complexes. Differences in the sol-gel transition temperature were observed upon heating and cooling, as is typical for such materials. We investigated the characteristics of this transition by measuring the isothermal changes in the elastic modulus over time at a constant frequency and the transition temperature at a range of frequencies. The kinetic nature of this transition depends on the composition of the complexes. A characteristic alginate-gelatin mass ratio is the ratio at which maximum transition temperature as well as elastic modulus and viscosity (rheological parameters) values are obtained; the characteristic mass ratio for these complexes was found to be 0.06. Calculation of the ionic group ratios in the biopolymers that form complexes and comparison of these data with the turbidimetric titration results clarified the origin of these maxima. Measuring the viscoelastic properties and the creep-elastic recoil of the samples allowed us to characterize these materials as viscoelastic media with a viscosity in the order of 103-104 Pa·s and an elastic modulus in the order of 102-103 Pa. These values drastically decrease at a certain stress threshold, which can be treated as the gel strength limit. Therefore, the observed rheological behavior of gels formed by fish gelatin modified with sodium alginate characterizes them as typical viscoelastic soft matter.

6.
Polymers (Basel) ; 12(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352683

RESUMO

This review considers the main properties of fish gelatin that determine its use in food technologies. A comparative analysis of the amino acid composition of gelatin from cold-water and warm-water fish species, in comparison with gelatin from mammals, which is traditionally used in the food industry, is presented. Fish gelatin is characterized by a reduced content of proline and hydroxyproline which are responsible for the formation of collagen-like triple helices. For this reason, fish gelatin gels are less durable and have lower gelation and melting temperatures than mammalian gelatin. These properties impose significant restrictions on the use of fish gelatin in the technology of gelled food as an alternative to porcine and bovine gelatin. This problem can be solved by modifying the functional characteristics of fish gelatin by adding natural ionic polysaccharides, which, under certain conditions, are capable of forming polyelectrolyte complexes with gelatin, creating additional nodes in the spatial network of the gel.

7.
Polymers (Basel) ; 12(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991901

RESUMO

General features of rheological properties and structural peculiarities of polyelectrolyte polysaccharide-gelatin complexes were discussed in this paper. Experimental results were obtained for typical complexes, such as -carrageenan-gelatin, chitosan-gelatin and sodium alginate-gelatin complexes. A rheological method allows us to examine the physical state of a complex in aqueous phase and the kinetics of the sol-gel transition and temperature dependences of properties as a result of structural changes. The storage modulus below the gelation temperature is constant, which is a reflection of the solid-like state of a material. The gels of these complexes are usually viscoplastic media. The quantitative values of the rheological parameters depend on the ratio of the components in the complexes. The formation of the structure as a result of strong interactions of the components in the complexes was confirmed by UV and FTIR data and SEM analysis. Interaction with polysaccharides causes a change in the secondary structure of gelatin, i.e., the content of triple helices in an -chain increases. The joint analysis of the structural and rheological characteristics suggests that the formation of additional junctions in the complex gel network results in increases in elasticity and hardening compared with those of the native gelatin.

8.
Polymers (Basel) ; 11(10)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640195

RESUMO

Gelatin (G) was extracted from the skin of Atlantic cod at different pH of the aqueous phase (pH 3, 4, 5, 8 and 9) and at a temperature of 50 ± 1 °C. The yield of gelatin (G3, G4, G5, G8, and G9, respectively) was 49-55% of the dry raw material. The influence of extraction pH on the physicochemical and functional properties of gelatin was studied. Sample G5 was characterized by higher protein content (92.8%) while lower protein content was obtained for sample G3 (86.5%) extracted under more aggressive conditions. Analysis of the molecular weight distribution showed the presence of α- and ß-chains as major components; the molecular weight of the samples ranged between 130 and 150 kDa, with sample G5 having the highest molecular weight. IR spectra of all samples had absorption bands characteristic of fish gelatin. The study of the secondary structure demonstrated higher amounts of ordered triple collagen-like helices for G5 extracted under mild conditions. Accordingly, sample G5 formed gels with high values for the storage modulus and gelling and melting temperatures, which decrease as pH changes into acidic or alkaline regions. In addition, the differential scanning calorimetry data showed that G5 had a higher glass transition temperature and melting enthalpy. Thus, cod skin is an excellent source of gelatin with the necessary physicochemical and functional properties, depending on the appropriate choice of aqueous phase pH for the extraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA