RESUMO
BACKGROUND/AIM: Constitutive activation of nuclear factor kappa-B (NFĸB) is a hallmark of various cancer types, including melanoma. Chemotherapy may further increase tumour NFĸB activity, a phenomenon that, in turn, exacerbates drug resistance. This study aimed at preliminary screening of a panel of aromatic aldehydes, including vanillin, for cytotoxicity and suppression of tumour cell NFĸB activity. MATERIALS AND METHODS: The cytotoxic and NFĸB-inhibitory effects of 10 aromatic aldehydes, including vanillin, were investigated in cultured A375 human melanoma cells. Each compound was assayed alone and in combination with the model NFĸB-activating drug doxorubicin. The most promising analogues were then tested alone and in combination with 4-hydroperoxycyclophosphamide in vitro, and with cyclophosphamide in mice bearing A375 xenografts. RESULTS: The vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde exhibited cytotoxicity against cultured A375 cells, and inhibited doxorubicin- and 4-hydroperoxycyclophosphamide-induced NFĸB activation. They also suppressed A375 cell growth in mice. CONCLUSION: o-vanillin and 2,4,6-trihydroxybenzaldehyde deserve further evaluation as potential anticancer drugs.
Assuntos
Benzaldeídos/farmacologia , Melanoma/patologia , NF-kappa B/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Propylene glycol (1,2-propanediol, PG) is a commonly used solvent for oral, intravenous, as well as topical pharmaceutical preparations. While PG is generally considered to be safe, it has been known that large intravenous doses given over a short period of time can be toxic. OBJECTIVE: To evaluate the effect of PG in sepsis induced by the bacterial endotoxin lipopolysaccharide (LPS). METHODS: Balb/c mice were treated with LPS (1 mg/kg b.w., i.p.) with or without PG (5 g/kg b.w. i.v.). The survival rate and the production of inflammatory cytokines were measured. In RAW264.7 mouse macrophages encoding NF-kB-luc reporter gene, the nuclear transcription factor kappa-B (NF-kB) activation was measured. RESULTS: We found that intravenous PG increased the mortality rate in sepsis induced by the bacterial endotoxin lipopolysaccharide (LPS) in mice. In accordance with that, PG enhanced LPS-induced production of inflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vivo. PG also increased the LPS-induced macrophage activation in vitro as detected by measuring NF-kB activation. CONCLUSION: Our results indicate that drugs containing high doses of PG can pose a risk when administered to patients suffering from or prone to Gram negative bacterial infection.
Assuntos
Interleucina-6/biossíntese , Sepse/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Linhagem Celular , Citocinas/biossíntese , Citocinas/sangue , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Interleucina-6/sangue , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Propilenoglicol/efeitos adversos , Sepse/induzido quimicamente , Sepse/imunologia , Sepse/mortalidade , Fator de Necrose Tumoral alfa/sangueRESUMO
The long awaited breakthrough of gene therapy significantly depends on the in vivo efficiency of targeted intracellular delivery. Hidden details of cellular uptake present a great hurdle for non-viral gene delivery with liposomes. Growing scientific evidence supports the involvement of polyanionic cell surface carbohydrates in cellular internalization of cationic liposomes. Syndecans, a highly conserved family of transmembrane heparan sulfate proteoglycans serve attachment sites for great variety of cationic ligands including growth factors, cytokines and even parasites. In the present study we quantitatively measured the contribution of various syndecan isoforms to liposome-mediated gene transfer. The obtained data show the superiority of syndecan-4, the ubiquitously expressed isoform of the syndecan family, in cellular uptake of liposomes. Applied mutational analysis demonstrated that gene delivery could be abolished by mutating the glycosaminoglycan attachment site of syndecans, highlighting the importance of polyanionic heparan sulfate side chains in the attachment of cationic liposomes. Blocking sulfation of syndecans also diminished gene delivery, a finding that confirms the essential role of polyanionic charges in binding cationic liposomes. Mutating other parts of the syndecan extracellular domain, including the cell-binding domain, had clearly smaller effect on liposome internalization. Mutational analyses also revealed that superiority of syndecan-4 in liposome-mediated gene delivery is significantly influenced by its cytoplasmic domain that orchestrates signaling pathways leading to macropinocytosis. In summary our study present a mechanistic insight into syndecan-mediated macropinocytic uptake of lipoplexes and highlights syndecan-4 as a superior target for cationic liposomes.
Assuntos
Técnicas de Transferência de Genes , Sindecanas/administração & dosagem , Amilorida/farmacologia , Proteínas de Transporte/farmacologia , Peptídeos Penetradores de Células , Cloratos/farmacologia , Endocitose/efeitos dos fármacos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Lipossomos , Luciferases/genética , Mutação , Estrutura Terciária de Proteína , Sindecanas/química , Sindecanas/genéticaRESUMO
Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel involved in pain sensation and in a wide range of non-pain-related physiological and pathological conditions. The aim of the present study was to explore the effects of selected heavy metal cations on the function of TRPV1. The cations ranked in the following sequence of pore-blocking activity: Co(2+) [half-maximal inhibitory concentration (IC(50)) = 13 µM] > Cd(2+) (I (50) = 38 µM) > Ni(2+) (IC(50) = 62 µM) > Cu(2+) (IC(50) = 200 µM). Zn(2+) proved to be a weak (IC(50) = 27 µM) and only partial inhibitor of the channel function, whereas Mg(2+), Mn(2+) and La(3+) did not exhibit any substantial effect. Co(2+), the most potent channel blocker, was able not only to compete with Ca(2+) but also to pass with it through the open channel of TRPV1. In response to heat activation or vanilloid treatment, Co(2+) accumulation was verified in TRPV1-transfected cell lines and in the TRPV1+ dorsal root ganglion neurons. The inhibitory effect was also demonstrated in vivo. Co(2+) applied together with vanilloid agonists attenuated the nocifensive eye wipe response in mice. Different rat TRPV1 pore point mutants (Y627W, N628W, D646N and E651W) were created that can validate the binding site of previously used channel blockers in agonist-evoked (45)Ca(2+) influx assays in cells expressing TRPV1. The IC(50) of Co(2+) on these point mutants were determined to be reasonably comparable to those on the wild type, which suggests that divalent cations passing through the TRPV1 channel use the same negatively charged amino acids as Ca(2+).
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Metais Pesados/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Células 3T3 , Animais , Células COS , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Cátions Bivalentes/química , Cátions Bivalentes/farmacologia , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Humanos , Metais Pesados/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Ratos , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismoRESUMO
Cell-penetrating peptides (CPPs) are short peptides capable of translocating across the plasma membrane of live cells and transporting conjugated compounds intracellularly. Fifteen years after discovering the first model cationic CPPs, penetratin and TAT, CPP internalization is still challenging many questions. Particularly it has been unknown whether CPPs enter the cells with or without mediation of a specific surface receptor. Here we report that syndecan-4, the universally expressed isoform of the syndecan family of transmembrane proteoglycans, binds and mediates transport of the three most frequently utilized cationic CPPs (penetratin, octaarginine and TAT) into the cells. Quantitative uptake studies and mutational analyses demonstrate that attachment of the cationic CPPs is mediated by specific interactions between the heparan sulfate chains of syndecan-4 and the CPPs. Protein kinase C alpha is also heavily involved in the uptake mechanism. The collected data give the first direct evidence on the receptor-mediated uptake of cationic CPPs and may replace the long-thought, but already contradicted membrane penetration hypothesis. Thus our study might give an answer for a decade long debate and foster the development of rationalized, syndecan-4 targeted novel delivery technologies.