Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082763

RESUMO

Acoustic emission (AE) monitoring is currently being widely investigated as a diagnostic tool in orthopedics, in particular for osteoarthritis (OA) diagnostics. Considering that age is one of the main risk factors for OA, investigating age-related changes in joint AEs might provide an additional incentive for further studies and consequent translation to clinical practice. The aim of this study is to investigate age-related changes in knee AE and determine AE hit definition modes as well as AE hit parameters that allow for improved age group differentiation. Knee AEs were recorded from 51 participants in two age groups (18-35 and 50-75 years old) whilst cycling with 30 and 60 rpm cadence. Two AE sensors with 15-40 kHz and 100-450 kHz frequency ranges were used, and three AE event detection modes investigated. Additionally, participants' Knee Osteoarthritis Outcome Scores (KOOS) were recorded. Low frequency sensors (15-40kHz) and hit modes with shortened hit and peak definition times showed the potential to distinguish between age groups. Moreover, a weak correlation was found between only three parameters (AE event median duration, rise time, and signal strength) and age, indicating that changes in joint AE are most likely associated with pathological changes rather than physiological ageing within the healthy norm.Clinical Relevance- the use of AE monitoring was examined in the context of age-related changes in knee health. The study indicates the potential for knee AE monitoring to be used as a quantitative measure of pathological changes in the knee status.


Assuntos
Articulação do Joelho , Osteoartrite do Joelho , Humanos , Articulação do Joelho/fisiologia , Joelho , Osteoartrite do Joelho/diagnóstico , Acústica , Envelhecimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-38083441

RESUMO

Physical fatigue in the workplace can lead to work-related musculoskeletal disorders (WMSDs), especially in occupations that require repetitive, mid-air movements, such as manufacturing and assembly tasks in industry settings. The current paper endeavors to validate an existing torque-based fatigue prediction model for lifting tasks. The model uses anthropometrics and the maximum torque of the individual to predict the time to fatigue. Twelve participants took part in the study which measured body composition parameters and the maximum force produced by the shoulder joint in flexion, followed by three lifting tasks for the shoulder in flexion, including isometric and dynamic tasks with one and two hands. Inertial measurements units (IMUs) were worn by participants to determine the torque at each instant to calculate the endurance time and CE, while a self-subjective questionnaire was utilized to assess physical exertion, the Borg Rate of Perceived Exertion (RPE) scale. The model was effective for static and two-handed tasks and produced errors in the range of [28.62 49.21] for the last task completed, indicating the previous workloads affect the endurance time, even though the individual perceives they are fully rested. The model was not effective for the one-handed dynamic task and differences were observed between males and females, which will be the focus of future work.An individualized, torque-based fatigue prediction model, such as the model presented, can be used to design worker-specific target levels and workloads, take inter and intra individual differences into account, and put fatigue mitigating interventions into place before fatigue occurs; resulting in potentially preventing WMSDs, aiding in worker wellbeing and benefitting the quality and efficiency of the work output.Clinical Relevance- This research provides the basis for an individualized, torque-based approach to the prediction of fatigue at the shoulder joint which can be used to assign worker tasks and rest breaks, design worker specific targets and reduce the prevalence of work-related musculoskeletal disorders in occupational settings.


Assuntos
Fadiga , Doenças Musculoesqueléticas , Ombro , Feminino , Humanos , Masculino , Eletromiografia , Doenças Musculoesqueléticas/prevenção & controle , Esforço Físico , Remoção
3.
IEEE Trans Biomed Eng ; 70(9): 2741-2751, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37027280

RESUMO

OBJECTIVE: Knee osteoarthritis is currently one of the top causes of disability in older population, a rate that will only increase in the future due to an aging population and the prevalence of obesity. However, objective assessment of treatment outcomes and remote evaluation are still in need of further development. Acoustic emission (AE) monitoring in knee diagnostics has been successfully adopted in the past; however, a wide discrepancy among the adopted AE techniques and analyses exists. This pilot study determined the most suitable metrics to differentiate progressive cartilage damage and the optimal frequency range and placement of AE sensors. METHODS: Knee AEs were recorded in the 100-450 kHz and 15-200kH frequency ranges from a cadaver specimen in knee flexion/extension. Four stages of artificially inflicted cartilage damage and two sensor positions were investigated. RESULTS: AE events in the lower frequency range and the following parameters provided better distinction between intact and damaged knee: hit amplitude, signal strength, and absolute energy. The medial condyle area of the knee was less prone to artefacts and unsystematic noise. Multiple reopenings of the knee compartment in the process of introducing the damage negatively affected the quality of the measurements. CONCLUSION: Results may improve AE recording techniques in future cadaveric and clinical studies. SIGNIFICANCE: This was the first study to evaluate progressive cartilage damage using AEs in a cadaver specimen. The findings of this study encourage further investigation of joint AE monitoring techniques.


Assuntos
Articulação do Joelho , Osteoartrite do Joelho , Humanos , Idoso , Projetos Piloto , Cadáver , Acústica , Cartilagem
4.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36501729

RESUMO

Acoustic emission (AE) sensing is an increasingly researched topic in the context of orthopedics and has a potentially high diagnostic value in the non-invasive assessment of joint disorders, such as osteoarthritis and implant loosening. However, a high level of reliability associated with the technology is necessary to make it appropriate for use as a clinical tool. This paper presents a test-retest and intrasession reliability evaluation of AE measurements of the knee during physical tasks: cycling, knee lifts and single-leg squats. Three sessions, each involving eight healthy volunteers were conducted. For the cycling activity, ICCs ranged from 0.538 to 0.901, while the knee lifts and single-leg squats showed poor reliability (ICC < 0.5). Intrasession ICCs ranged from 0.903 to 0.984 for cycling and from 0.600 to 0.901 for the other tasks. The results of this study show that movement consistency across multiple recordings and minimizing the influence of motion artifacts are essential for higher test reliability. It was shown that motion artifact resistant sensor mounting and the use of baseline movements to assess sensor attachment can improve the sensing reliability of AE techniques. Moreover, constrained movements, specifically cycling, show better inter- and intrasession reliability than unconstrained exercises.


Assuntos
Articulação do Joelho , Joelho , Humanos , Reprodutibilidade dos Testes , Movimento , Acústica
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4346-4349, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086396

RESUMO

Repetitive movements that involve a significant shift of the body's center of mass can lead to shoulder and elbow fatigue, which are linked to injury and musculoskeletal disorders if not addressed in time. Research has been conducted on the joint torque individuals can produce, a quantity that indicates the ability of the person to carry out such repetitive movements. Most of the studies surround gait analysis, rehabilitation, the assessment of athletic performance, and robotics. The aim of this study is to develop a model that estimates the maximum shoulder and elbow joint torque an individual can produce based on anthropometrics and demographics without taking a manual measurement with a force gauge (dynamometer). Nineteen subjects took part in the study which recorded maximum shoulder and elbow joint torques using a dynamometer. Sex, age, body composition parameters, and anthropometric data were recorded, and relevant parameters which significantly contributed to joint torque were identified using regression techniques. Of the parameters measured, body mass index and upper forearm volume predominantly contribute to maximum torque for shoulder and elbow joints; coefficient of determination values were between 0.6 and 0.7 for the independent variables and were significant for maximum shoulder joint torque (P<0.001) and maximum elbow joint torque (P<0.005) models. Two expressions illustrated the impact of the relevant independent variables on maximum shoulder joint torque and maximum elbow joint torque, using multiple linear regression. Coefficient of determination values for the models were between 0.6 and 0.7. The models developed enable joint torque estimation for individuals using measurements that are quick and easy to acquire, without the use of a dynamometer. This information is useful for those employing joint torque data in biomechanics in the areas of health, rehabilitation, ergonomics, occupational safety, and robotics. Clinical Relevance- The rapid estimation of arm joint torque without the direct force measurement can help occupational safety with the prevention of injury and musculoskeletal disorders in several working scenarios.


Assuntos
Articulação do Cotovelo , Doenças Musculoesqueléticas , Demografia , Humanos , Movimento , Ombro , Torque
6.
BMC Sports Sci Med Rehabil ; 14(1): 28, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35183244

RESUMO

BACKGROUND: The benefits to be obtained from home-based physical therapy programmes are dependent on the proper execution of physiotherapy exercises during unsupervised treatment. Wearable sensors and appropriate movement-related metrics may be used to determine at-home exercise performance and compliance to a physical therapy program. METHODS: A total of thirty healthy volunteers (mean age of 31 years) had their movements captured using wearable inertial measurement units (IMUs), after video recordings of five different exercises with varying levels of complexity were demonstrated to them. Participants were then given wearable sensors to enable a second unsupervised data capture at home. Movement performance between the participants' recordings was assessed with metrics of movement smoothness, intensity, consistency and control. RESULTS: In general, subjects executed all exercises similarly when recording at home and as compared with their performance in the lab. However, participants executed all movements faster compared to the physiotherapist's demonstrations, indicating the need of a wearable system with user feedback that will set the pace of movement. CONCLUSION: In light of the Covid-19 pandemic and the imperative transition towards remote consultation and tele-rehabilitation, this work aims to promote new tools and methods for the assessment of adherence to home-based physical therapy programmes. The studied IMU-derived features have shown adequate sensitivity to evaluate home-based programmes in an unsupervised manner. Cost-effective wearables, such as the one presented in this study, can support therapeutic exercises that ought to be performed with appropriate speed, intensity, smoothness and range of motion.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7300-7303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892784

RESUMO

Among the many diverse methods of recording biological signals, sound and acoustic emission monitoring are becoming popular for data acquisition; however, these sensors tend to be very susceptible to motion artefacts and noise. In the case of joint monitoring, this issue is even more significant, considering that joint sounds are recorded during limb movements to establish joint health and performance. This paper investigates different sensor attachment methods for acoustic emission monitoring of the knee, which could lead to reduced motion and skin movement artefacts and improve the quality of sensory data sets. As a proof-of-concept study, several methods were tested over a range of exercises to evaluate noise resistance and signal quality. The signals least affected by motion artefacts were recorded when using high-density ethylene-vinyl acetate (EVA) foam holders, attached to the skin with double-sided biocompatible adhesive tape. Securing and isolating the connecting cable with foam is also recommended to avoid noise due to the cable movement.Clinical Relevance- The results of this study will be useful in joint AE monitoring, as well as in other methods of body sound recording that involve the mounting of relatively heavy sensors, such as phonocardiography and respiratory monitoring.


Assuntos
Artefatos , Articulação do Joelho , Acústica , Humanos , Movimento (Física) , Gravação de Som
8.
Clin Biomech (Bristol, Avon) ; 87: 105410, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34130036

RESUMO

BACKGROUND: The assessment of dynamic stability is crucial for the prevention of falls in the elderly and people with functional impairments. Evidence that total knee arthroplasty improves balance in patients with severe osteoarthritis is scarce and no information exists about how the surgery affects dynamic stability during stair negotiation. METHODS: This study aims to investigate if patients before and one year after surgery are less stable compared to asymptomatic controls. Seventeen control and twenty-seven patient participants with end-stage knee osteoarthritis that were scheduled to undergo unilateral total knee arthroplasty were recruited in this study. Participants' assessment was carried out by means of marker-based optical full-body motion capture with force platforms. The extrapolated Centre of mass and the margin of stability metrics were used to examine dynamic stability during stair ascent and descent. FINDINGS: Patient participants, during both pre-operative and post-operative assessments, were equally balanced to the asymptomatic controls during stair gait (p > .188). Additionally, the patients' overall stability did not improve significantly one year after arthroplasty surgery (p > .252). INTERPRETATION: Even if pain from arthritis and fear of falling is decreased following surgery, our results indicate that stability in stair walking in not affected by osteoarthritis and total knee arthroplasty. CLINICAL TRIAL REGISTRATION NUMBER: NCT02422251.


Assuntos
Artroplastia do Joelho , Idoso , Fenômenos Biomecânicos , Medo , Marcha , Humanos , Articulação do Joelho/cirurgia , Negociação , Caminhada
9.
J Orthop Surg Res ; 16(1): 177, 2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33676526

RESUMO

BACKGROUND: Dissimilar total knee arthroplasty implant designs offer different functional characteristics. This is the first work in the literature to fully assess the Columbus ultra-congruent mobile (UCR) system with a rotating platform. METHODS: This is a double-blinded randomised controlled trial, comparing the functional performance of the low congruent fixed (CR DD), ultra-congruent fixed (UC) and UCR Columbus Total Knee Systems. The pre-operative and post-operative functional performance of twenty-four osteoarthritic patients was evaluated against nine control participants when carrying out everyday tasks. Spatiotemporal, kinematic and kinetic gait parameters in walking and stair navigation were extracted by means of motion capture. RESULTS: The UC implant provided better post-operative function, closely followed by the UCR design. However, both the UC and UCR groups exhibited restricted post-operative sagittal RoM (walking, 52.1 ± 4.4° and 53.2 ± 6.6°, respectively), whilst patients receiving a UCR implant did not show an improvement in their tibiofemoral axial rotation despite the bearing's mobile design (walking, CR DD 13.2 ± 4.6°, UC 15.3 ± 6.7°, UCR 13.5 ± 5.4°). Patients with a CR DD fixed bearing showed a statistically significant post-operative improvement in their sagittal RoM when walking (56.8 ± 4.6°). CONCLUSION: It was concluded that both ultra-congruent designs in this study, the UC and UCR bearings, showed comparable functional performance and improvement after TKA surgery. The CR DD group showed the most prominent improvement in the sagittal RoM during walking. TRIAL REGISTRATION: The study is registered under the clinical trial registration number: NCT02422251 . Registered on April 21, 2015.


Assuntos
Artroplastia do Joelho/métodos , Prótese do Joelho , Desenho de Prótese , Subida de Escada/fisiologia , Caminhada/fisiologia , Idoso , Fenômenos Biomecânicos , Método Duplo-Cego , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade
10.
PLoS One ; 16(2): e0246528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539481

RESUMO

Parkinson's disease (PD) is a progressive neurological disorder of the central nervous system that deteriorates motor functions, while it is also accompanied by a large diversity of non-motor symptoms such as cognitive impairment and mood changes, hallucinations, and sleep disturbance. Parkinsonism is evaluated during clinical examinations and appropriate medical treatments are directed towards alleviating symptoms. Tri-axial accelerometers, gyroscopes, and magnetometers could be adopted to support clinicians in the decision-making process by objectively quantifying the patient's condition. In this context, at-home data collections aim to capture motor function during daily living and unobstructedly assess the patients' status and the disease's symptoms for prolonged time periods. This review aims to collate existing literature on PD monitoring using inertial sensors while it focuses on papers with at least one free-living data capture unsupervised either directly or via videotapes. Twenty-four papers were selected at the end of the process: fourteen investigated gait impairments, eight of which focused on walking, three on turning, two on falls, and one on physical activity; ten articles on the other hand examined symptoms, including bradykinesia, tremor, dyskinesia, and motor state fluctuations in the on/off phenomenon. In summary, inertial sensors are capable of gathering data over a long period of time and have the potential to facilitate the monitoring of people with Parkinson's, providing relevant information about their motor status. Concerning gait impairments, kinematic parameters (such as duration of gait cycle, step length, and velocity) were typically used to discern PD from healthy subjects, whereas for symptoms' assessment, researchers were capable of achieving accuracies of over 90% in a free-living environment. Further investigations should be focused on the development of ad-hoc hardware and software capable of providing real-time feedback to clinicians and patients. In addition, features such as the wearability of the system and user comfort, set-up process, and instructions for use, need to be strongly considered in the development of wearable sensors for PD monitoring.


Assuntos
Hipocinesia/diagnóstico , Hipocinesia/fisiopatologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Humanos , Dispositivos Eletrônicos Vestíveis
11.
Sensors (Basel) ; 20(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028042

RESUMO

The rapid technological advancements of Industry 4.0 have opened up new vectors for novel industrial processes that require advanced sensing solutions for their realization. Motion capture (MoCap) sensors, such as visual cameras and inertial measurement units (IMUs), are frequently adopted in industrial settings to support solutions in robotics, additive manufacturing, teleworking and human safety. This review synthesizes and evaluates studies investigating the use of MoCap technologies in industry-related research. A search was performed in the Embase, Scopus, Web of Science and Google Scholar. Only studies in English, from 2015 onwards, on primary and secondary industrial applications were considered. The quality of the articles was appraised with the AXIS tool. Studies were categorized based on type of used sensors, beneficiary industry sector, and type of application. Study characteristics, key methods and findings were also summarized. In total, 1682 records were identified, and 59 were included in this review. Twenty-one and 38 studies were assessed as being prone to medium and low risks of bias, respectively. Camera-based sensors and IMUs were used in 40% and 70% of the studies, respectively. Construction (30.5%), robotics (15.3%) and automotive (10.2%) were the most researched industry sectors, whilst health and safety (64.4%) and the improvement of industrial processes or products (17%) were the most targeted applications. Inertial sensors were the first choice for industrial MoCap applications. Camera-based MoCap systems performed better in robotic applications, but camera obstructions caused by workers and machinery was the most challenging issue. Advancements in machine learning algorithms have been shown to increase the capabilities of MoCap systems in applications such as activity and fatigue detection as well as tool condition monitoring and object recognition.

12.
Int Biomech ; 7(1): 9-18, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33998386

RESUMO

Background: Post-operative performance of knee bearings is typically assessed in activities of daily living by means of motion capture. Biomechanical studies predominantly explore common tasks such as walking, standing and stair climbing, while overlooking equally demanding activities such as embarking a vehicle. Aims: The aim of this work is to evaluate changes in the movement habits of patients after total knee arthroplasty surgery in comparison to healthy age-matched control participants. Methods: A mock-up car was fabricated based on the architecture of a common vehicle. Ten control participants and 10 patients with severe osteoarthritis of the knee attended a single- and three-motion capture session(s), respectively. Participants were asked to enter the car and sit comfortably adopting a driving position. Three trials per session were used for the identification of movement strategies by means of hierarchical clustering. Task completion time was also measured. Results: Patients' movement behaviour didn't change significantly following total knee arthroplasty surgery. Control participants favoured different movement strategies compared to patients post-operatively. Group membership, height and sidedness of the affected joint were found to be non-significant in task completion time. Conclusion: This study describes an alternative movement identification technique for the analysis of the ingress movement that may be used to clinically assess knee bearings and aid in movement simulations and vehicle design.


Assuntos
Atividades Cotidianas/psicologia , Artroplastia do Joelho/reabilitação , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Movimento/fisiologia , Amplitude de Movimento Articular/fisiologia , Idoso , Condução de Veículo , Estudos de Casos e Controles , Feminino , Humanos , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/cirurgia
13.
J Biomech ; 99: 109552, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31862113

RESUMO

The purpose of this study is to examine the effect of the body's mass distribution to segments and the filtering of kinematic data on the estimation of vertical ground reaction forces from positional data. A public dataset of raw running biomechanics was used for the purposes of the analysis, containing recordings of twenty-eight competitive or elite athletes running on an instrumented treadmill at three different speeds. A grid-search on half of the trials was employed to seek the values of the parameters that optimise the approximation of biomechanical loads. Two-way ANOVAs were then conducted to examine the significance of the parameterised factors in the modelled waveforms. The reserved recordings were used to validate the predictive accuracy of the model. The cut-off filtering frequencies of the pelvis and thigh markers were correlated to running speed and heel-strike patterns, respectively. Optimal segment masses were in agreement with standardised literature reported values. Root mean square errors for slow running (2.5 m/s) were on average equal to 0.1 (body weight normalized). Errors increased with running speeds to 0.13 and 0.18 for 3.5 m/s and 4.5 m/s, respectively. This study accurately estimated vertical ground reaction forces for slow-paced running by only considering the kinematics of the pelvis and thighs. Future studies should consider configuring the filtering of kinematic inputs based on the location of markers and type of running.


Assuntos
Fenômenos Mecânicos , Corrida , Adulto , Fenômenos Biomecânicos , Peso Corporal , Teste de Esforço , Calcanhar , Humanos , Masculino , Pelve
14.
J Appl Biomech ; 34(2): 96-103, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28952845

RESUMO

Patients with osteoarthritis of the knee commonly alter their movement to compensate for lower limb weakness and alleviate joint pain. Movement alterations may lead to weight-bearing asymmetries, and potentially to the progression of the disease. This study presents a novel numerical procedure for the identification of sit-to-walk strategies and differences in movement habits between control adults and persons with knee osteoarthritis. Ten control and 12 participants with osteoarthritis performed the sit-to-walk task in a motion capture laboratory. Participants sat on a stool with the height adjusted to 100% of their knee height, then stood and walked to pick up an object from a table in front of them. Different movement strategies were identified by means of hierarchical clustering. Trials were also classified as to whether the left and right extremities used a bilateral or an asymmetrical strategy. Participants with osteoarthritis used significantly more asymmetrical arm strategies (P = .03) while adopting the pushing through the chair strategy more often than the control subjects (P = .02). The results demonstrated that the 2 groups favor different sit-to-walk strategies. Asymmetrical arm behavior possibly indicates a compensation for the weakness of the affected leg. The proposed procedure may be useful to rapidly assess postoperative outcomes and developing rehabilitation strategies.


Assuntos
Movimento/fisiologia , Osteoartrite do Joelho/fisiopatologia , Idoso , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA