Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; 14(3): e0329022, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37093087

RESUMO

Meiosis is associated with genetic changes in the genome-via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutation rate. To date, however, the exact distribution and type of meiosis-associated changes and the role of the chromatin conformation in this context are largely unexplored. Here, we determine recombination, gene conversion, and de novo mutations using whole-genome sequencing of all meiotic products of 23 individual meioses in Zymoseptoria tritici, an important pathogen of wheat. We confirm a high genome-wide recombination rate of 65 centimorgan (cM)/Mb and see higher recombination rates on the accessory compared to core chromosomes. A substantial fraction of 0.16% of all polymorphic markers was affected by gene conversions, showing a weak GC-bias and occurring at higher frequency in regions of constitutive heterochromatin, indicated by the histone modification H3K9me3. The de novo mutation rate associated with meiosis was approximately three orders of magnitude higher than the corresponding mitotic mutation rate. Importantly, repeat-induced point mutation (RIP), a fungal defense mechanism against duplicated sequences, is active in Z. tritici and responsible for the majority of these de novo meiotic mutations. Our results indicate that the genetic changes associated with meiosis are a major source of variability in the genome of an important plant pathogen and shape its evolutionary trajectory. IMPORTANCE The impact of meiosis on the genome composition via gene conversion and mutations is mostly poorly understood, in particular, for non-model species. Here, we sequenced all four meiotic products for 23 individual meioses and determined the genetic changes caused by meiosis for the important fungal wheat pathogen Zymoseptoria tritici. We found a high rate of gene conversions and an effect of the chromatin conformation on gene conversion rates. Higher conversion rates were found in regions enriched with the H3K9me3-a mark for constitutive heterochromatin. Most importantly, meiosis was associated with a much higher frequency of de novo mutations than mitosis; 78% of the meiotic mutations were caused by repeat-induced point mutations-a fungal defense mechanism against duplicated sequences. In conclusion, the genetic changes associated with meiosis are therefore a major factor shaping the genome of this fungal pathogen.


Assuntos
Ascomicetos , Conversão Gênica , Mutação Puntual , Heterocromatina/genética , Ascomicetos/genética , Mutação , Meiose/genética
2.
Chromosome Res ; 30(2-3): 241-253, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881207

RESUMO

Non-Mendelian transmission has been reported for various genetic elements, ranging from small transposons to entire chromosomes. One prime example of such a transmission pattern are B chromosomes in plants and animals. Accessory chromosomes in fungi are similar to B chromosomes in showing presence/absence polymorphism and being non-essential. How these chromosomes are transmitted during meiosis is however poorly understood-despite their often high impact on the fitness of the host. For several fungal organisms, a non-Mendelian transmission or a mechanistically unique meiotic drive of accessory chromosomes have been reported. In this review, we provide an overview of the possible mechanisms that can cause the non-Mendelian transmission or meiotic drives of fungal accessory chromosomes. We compare processes responsible for the non-Mendelian transmission of accessory chromosomes for different fungal eukaryotes and discuss the structural traits of fungal accessory chromosomes affecting their meiotic transmission. We conclude that research on fungal accessory chromosomes, due to their small size, ease of sequencing, and epigenetic profiling, can complement the study of B chromosomes in deciphering factors that influence and regulate the non-Mendelian transmission of entire chromosomes.


Assuntos
Cromossomos Fúngicos , Meiose , Animais , Cromossomos Fúngicos/genética , Fungos/genética
3.
Nat Commun ; 12(1): 5869, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620872

RESUMO

Mutations are the source of genetic variation and the substrate for evolution. Genome-wide mutation rates appear to be affected by selection and are probably adaptive. Mutation rates are also known to vary along genomes, possibly in response to epigenetic modifications, but causality is only assumed. In this study we determine the direct impact of epigenetic modifications and temperature stress on mitotic mutation rates in a fungal pathogen using a mutation accumulation approach. Deletion mutants lacking epigenetic modifications confirm that histone mark H3K27me3 increases whereas H3K9me3 decreases the mutation rate. Furthermore, cytosine methylation in transposable elements (TE) increases the mutation rate 15-fold resulting in significantly less TE mobilization. Also accessory chromosomes have significantly higher mutation rates. Finally, we find that temperature stress substantially elevates the mutation rate. Taken together, we find that epigenetic modifications and environmental conditions modify the rate and the location of spontaneous mutations in the genome and alter its evolutionary trajectory.


Assuntos
Epigênese Genética , Fungos/genética , Mutagênese , Taxa de Mutação , Ascomicetos/genética , Metilação de DNA , Elementos de DNA Transponíveis , Evolução Molecular , Instabilidade Genômica , Código das Histonas , Histonas , Mutação , Acúmulo de Mutações , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA