Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732124

RESUMO

Oxytocin, a significant pleiotropic neuropeptide, regulates psychological stress adaptation and social communication, as well as peripheral actions, such as uterine contraction and milk ejection. Recently, a Japanese Kampo medicine called Kamikihito (KKT) has been reported to stimulate oxytocin neurons to induce oxytocin secretion. Two-pore-domain potassium channels (K2P) regulate the resting potential of excitable cells, and their inhibition results in accelerated depolarization that elicits neuronal and endocrine cell activation. We assessed the effects of KKT and 14 of its components on a specific K2P, the potassium channel subfamily K member 2 (TREK-1), which is predominantly expressed in oxytocin neurons in the central nervous system (CNS). KKT inhibited the activity of TREK-1 induced via the channel activator ML335. Six of the 14 components of KKT inhibited TREK-1 activity. Additionally, we identified that 22 of the 41 compounds in the six components exhibited TREK-1 inhibitory effects. In summary, several compounds included in KKT partially activated oxytocin neurons by inhibiting TREK-1. The pharmacological effects of KKT, including antistress effects, may be partially mediated through the oxytocin pathway.


Assuntos
Neurônios , Ocitocina , Canais de Potássio de Domínios Poros em Tandem , Animais , Humanos , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicina Kampo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Ocitocina/farmacologia , Ocitocina/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA