Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 133(1): 43-53, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38802597

RESUMO

The information about the magnitude of differences in thermal plasticity both between and within populations, as well as identification of the underlying molecular mechanisms are key to understanding the evolution of thermal plasticity. In particular, genes underlying variation in the physiological response to temperature can provide raw material for selection acting on plastic traits. Using RNAseq, we investigate the transcriptional response to temperature in males and females from bulb mite populations selected for the increased frequency of one of two discrete male morphs (fighter- and scrambler-selected populations) that differ in relative fitness depending on temperature. We show that different mechanisms underlie the divergence in thermal response between fighter- and scrambler-selected populations at decreased vs. increased temperature. Temperature decrease to 18 °C was associated with higher transcriptomic plasticity of males with more elaborate armaments, as indicated by a significant selection-by-temperature interaction effect on the expression of 40 genes, 38 of which were upregulated in fighter-selected populations in response to temperature decrease. In response to 28 °C, no selection-by-temperature interaction in gene expression was detected. Hence, differences in phenotypic response to temperature increase likely depended on genes associated with their distinct morph-specific thermal tolerance. Selection of males also drove gene expression patterns in females. These patterns could be associated with temperature-dependent fitness differences between females from fighter- vs. scrambler-selected populations reported in previous studies. Our study shows that selection for divergent male sexually selected morphologies and behaviors has a potential to drive divergence in metabolic pathways underlying plastic response to temperature in both sexes.


Assuntos
Seleção Genética , Temperatura , Transcriptoma , Masculino , Animais , Feminino , Caracteres Sexuais , Fenótipo , Perfilação da Expressão Gênica , Aptidão Genética , Ácaros/genética , Ácaros/fisiologia
2.
Genetics ; 226(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37956094

RESUMO

Genome sequencing and genetic mapping of molecular markers have demonstrated nearly complete Y-linkage across much of the guppy (Poecilia reticulata) XY chromosome pair. Predominant Y-linkage of factors controlling visible male-specific coloration traits also suggested that these polymorphisms are sexually antagonistic (SA). However, occasional exchanges with the X are detected, and recombination patterns also appear to differ between natural guppy populations, suggesting ongoing evolution of recombination suppression under selection created by partially sex-linked SA polymorphisms. We used molecular markers to directly estimate genetic maps in sires from 4 guppy populations. The maps are very similar, suggesting that their crossover patterns have not recently changed. Our maps are consistent with population genomic results showing that variants within the terminal 5 Mb of the 26.5 Mb sex chromosome, chromosome 12, are most clearly associated with the maleness factor, albeit incompletely. We also confirmed occasional crossovers proximal to the male-determining region, defining a second, rarely recombining, pseudo-autosomal region, PAR2. This fish species may therefore have no completely male-specific region (MSY) more extensive than the male-determining factor. The positions of the few crossover events suggest a location for the male-determining factor within a physically small repetitive region. A sex-reversed XX male had few crossovers in PAR2, suggesting that this region's low crossover rate depends on the phenotypic, not the genetic, sex. Thus, rare individuals whose phenotypic and genetic sexes differ, and/or occasional PAR2 crossovers in males can explain the failure to detect fully Y-linked variants.


Assuntos
Poecilia , Humanos , Animais , Masculino , Poecilia/genética , Cromossomo Y/genética , Cromossomos Sexuais/genética , Mapeamento Cromossômico , Cromossomos Humanos Y , Recombinação Genética
3.
Nat Commun ; 14(1): 7840, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030627

RESUMO

As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.


Assuntos
Mamíferos , Roedores , Animais , Roedores/genética , Mamíferos/genética , Genoma , Arvicolinae/genética , Mudança Climática , Adaptação Fisiológica/genética
4.
Mol Ecol Resour ; 23(8): 1757-1771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37486035

RESUMO

Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.


Assuntos
Genoma , Taxa de Mutação , Humanos , Animais , Mutação , Evolução Biológica , Aprendizado de Máquina
5.
Heredity (Edinb) ; 130(5): 269-277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36944856

RESUMO

Previous studies indicated that in some species phylogeographic patterns obtained in the analysis of nuclear and mitochondrial DNA (mtDNA) markers can be different. Such mitonuclear discordance can have important evolutionary and ecological consequences. In the present study, we aimed to check whether there was any discordance between mtDNA and nuclear DNA in the bank vole population in the contact zone of its two mtDNA lineages. We analysed the population genetic structure of bank voles using genome-wide genetic data (SNPs) and diversity of sequenced heart transcriptomes obtained from selected individuals from three populations inhabiting areas outside the contact zone. The SNP genetic structure of the populations confirmed the presence of at least two genetic clusters, and such division was concordant with the patterns obtained in the analysis of other genetic markers and functional genes. However, genome-wide SNP analyses revealed the more detailed structure of the studied population, consistent with more than two bank vole recolonisation waves, as recognised previously in the study area. We did not find any significant differences between individuals representing two separate mtDNA lineages of the species in functional genes coding for protein-forming complexes, which are involved in the process of cell respiration in mitochondria. We concluded that the contemporary genetic structure of the populations and the width of the contact zone were shaped by climatic and environmental factors rather than by genetic barriers. The studied populations were likely isolated in separate Last Glacial Maximum refugia for insufficient amount of time to develop significant genetic differentiation.


Assuntos
DNA Mitocondrial , Genômica , Humanos , Animais , Polônia , Filogenia , DNA Mitocondrial/genética , Arvicolinae/genética , Variação Genética
6.
Evol Appl ; 15(10): 1639-1652, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330306

RESUMO

Understanding pest evolution in agricultural systems is crucial for developing effective and innovative pest control strategies. Types of cultivation, such as crop monocultures versus polycultures or crop rotation, may act as a selective pressure on pests' capability to exploit the host's resources. In this study, we examined the herbivorous mite Aceria tosichella (commonly known as wheat curl mite), a widespread wheat pest, to understand how fluctuating versus stable environments influence its niche breadth and ability to utilize different host plant species. We subjected a wheat-bred mite population to replicated experimental evolution in a single-host environment (either wheat or barley), or in an alternation between these two plant species every three mite generations. Next, we tested the fitness of these evolving populations on wheat, barley, and on two other plant species not encountered during experimental evolution, namely rye and smooth brome. Our results revealed that the niche breadth of A. tosichella evolved in response to the level of environmental variability. The fluctuating environment expanded the niche breadth by increasing the mite's ability to utilize different plant species, including novel ones. Such an environment may thus promote flexible host-use generalist phenotypes. However, the niche expansion resulted in some costs expressed as reduced performances on both wheat and barley as compared to specialists. Stable host environments led to specialized phenotypes. The population that evolved in a constant environment consisting of barley increased its fitness on barley without the cost of utilizing wheat. However, the population evolving on wheat did not significantly increase its fitness on wheat, but decreased its performance on barley. Altogether, our results indicated that, depending on the degree of environmental heterogeneity, agricultural systems create different conditions that influence pests' niche breadth evolution, which may in turn affect the ability of pests to persist in such systems.

7.
Nat Ecol Evol ; 6(9): 1330-1342, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851852

RESUMO

The evolution of costly traits such as deer antlers and peacock trains, which drove the formation of Darwinian sexual selection theory, has been suggested to both reflect and affect patterns of genetic variance across the genome, but direct tests are missing. Here, we used an evolve and resequence approach to reveal patterns of genome-wide diversity associated with the expression of a sexually selected weapon that is dimorphic among males of the bulb mite, Rhizoglyphus robini. Populations selected for the weapon showed reduced genome-wide diversity compared to populations selected against the weapon, particularly in terms of the number of segregating non-synonymous positions, indicating enhanced purifying selection. This increased purifying selection reduced inbreeding depression, but outbred female fitness did not improve, possibly because any benefits were offset by increased sexual antagonism. Most single nucleotide polymorphisms (SNPs) that consistently diverged in response to selection were initially rare and overrepresented in exons, and enriched in regions under balancing or relaxed selection, suggesting they are probably moderately deleterious variants. These diverged SNPs were scattered across the genome, further demonstrating that selection for or against the weapon and the associated changes to the mating system can both capture and influence genome-wide variation.


Assuntos
Cervos , Carga Genética , Animais , Feminino , Genômica , Masculino , Fenótipo , Seleção Genética
8.
Nat Ecol Evol ; 6(7): 945-954, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618818

RESUMO

Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.


Assuntos
Parasitos , Poecilia , Animais , Comportamento Predatório
9.
Mol Ecol ; 30(4): 1005-1016, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33345416

RESUMO

Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.


Assuntos
Doenças dos Peixes , Parasitos , Poecilia , Trematódeos , Animais , Poecilia/genética , Trematódeos/genética , Trinidad e Tobago
10.
Parasite Immunol ; 42(12): e12782, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738163

RESUMO

Gyrodactylids are ubiquitous ectoparasites of teleost fish, but our understanding of the host immune response against them is fragmentary. Here, we used RNA-Seq to investigate genes involved in the primary response to infection with Gyrodactylus bullatarudis on the skin of guppies, Poecilia reticulata, an important evolutionary model, but also one of the most common fish in the global ornamental trade. Analysis of differentially expressed genes identified several immune-related categories, including IL-17 signalling pathway and Th17 cell differentiation, cytokine-cytokine receptor interaction, chemokine signalling pathway, NOD-like receptor signalling pathway, natural killer cell-mediated cytotoxicity and pathways involved in antigen recognition, processing and presentation. Components of both the innate and the adaptive immune responses play a role in response to gyrodactylid infection. Genes involved in IL-17/Th17 response were particularly enriched among differentially expressed genes, suggesting a significant role for this pathway in fish responses to ectoparasites. Our results revealed a sizable list of genes potentially involved in the teleost-gyrodactylid immune response.


Assuntos
Ectoparasitoses/veterinária , Doenças dos Peixes/imunologia , Platelmintos/imunologia , Imunidade Adaptativa/genética , Animais , Ectoparasitoses/imunologia , Ectoparasitoses/parasitologia , Doenças dos Peixes/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Poecilia , RNA-Seq
11.
Mol Ecol ; 29(8): 1494-1507, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32222008

RESUMO

Determining the molecular basis of parasite adaptation to its host is an important component in understanding host-parasite coevolution and the epidemiology of parasitic infections. Here, we investigate short- and long-term adaptive evolution in the eukaryotic parasite Gyrodactylus bullatarudis infecting Caribbean guppies (Poecilia reticulata), by comparing the reference genome of Tobagonian G. bullatarudis with other Platyhelminthes, and by analysing resequenced samples from local Trinidadian populations. At the macroevolutionary timescale, we observed duplication of G-protein and serine proteases genes, which are probably important in host-parasite arms races. Serine protease also showed strong evidence of ongoing, diversifying selection at the microevolutionary timescale. Furthermore, our analyses revealed that a hybridization event, involving two divergent genomes, followed by recombination has dramatically affected the genetic composition of Trinidadian populations. The recombinant genotypes invaded Trinidad and replaced local parasites in all populations. We localized more than 300 genes in regions fixed in local populations for variants of different origin, possibly due to diversifying selection pressure from local host populations. In addition, around 70 genes were localized in regions identified as heterozygous in some, but not all, individuals. This pattern is consistent with a very recent spread of recombinant parasites. Overall, our results are consistent with the idea that recombination between divergent genomes can result in particularly successful parasites.


Assuntos
Doenças dos Peixes , Parasitos , Poecilia , Animais , Região do Caribe , Duplicação Gênica , Humanos , Poecilia/genética , Recombinação Genética , Trinidad e Tobago
12.
Proc Biol Sci ; 285(1872)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29436497

RESUMO

Current species distributions at high latitudes are the product of expansion from glacial refugia into previously uninhabitable areas at the end of the last glaciation. The traditional view of postglacial colonization is that southern populations expanded their ranges into unoccupied northern territories. Recent findings on mitochondrial DNA (mtDNA) of British small mammals have challenged this simple colonization scenario by demonstrating a more complex genetic turnover in Britain during the Pleistocene-Holocene transition where one mtDNA clade of each species was replaced by another mtDNA clade of the same species. Here, we provide evidence from one of those small mammals, the bank vole (Clethrionomys glareolus), that the replacement was genome-wide. Using more than 10 000 autosomal SNPs we found that similar to mtDNA, bank vole genomes in Britain form two (north and south) clusters which admix. Therefore, the genome of the original postglacial colonists (the northern cluster) was probably replaced by another wave of migration from a different continental European population (the southern cluster), and we gained support for this by modelling with approximate Bayesian computation. This finding emphasizes the importance of analysis of genome-wide diversity within species under changing climate in creating opportunities for sophisticated testing of population history scenarios.


Assuntos
Distribuição Animal , Migração Animal , Arvicolinae/fisiologia , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Arvicolinae/genética , Inglaterra , Filogenia , Escócia , Análise de Sequência de DNA , País de Gales
13.
Genome Biol Evol ; 8(8): 2351-7, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27401174

RESUMO

Intralocus sexual conflict (IASC) prevents males and females from reaching their disparate phenotypic optima and is widespread, but little is known about its genetic underpinnings. In Rhizoglyphus robini, a mite species with alternative male morphs, elevated sexual dimorphism of the armored fighter males (compared to more feminized scramblers males) was previously reported to be associated with increased IASC. Because IASC persists if gene expression patterns are correlated between sexes, we compared gene expression patterns of males and females from the replicate lines selected for increased proportion of fighter or scrambler males (F- and S-lines, respectively). Specifically, we tested the prediction that selection for fighter morph caused correlated changes in gene expression patterns in females. We identified 532 differentially expressed genes (FDR < 0.05) between the F-line and S-line males. Consistent with the prediction, expression levels of these genes also differed between females from respective lines. Thus, significant proportion of genes differentially expressed between sexually selected male phenotypes showed correlated expression levels in females, likely contributing to elevated IASC in F-lines reported in a previous study.


Assuntos
Ácaros/crescimento & desenvolvimento , Biossíntese de Proteínas/genética , Seleção Genética , Processos de Determinação Sexual , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Ácaros/genética , Fenótipo , Caracteres Sexuais
14.
Mol Biol Evol ; 33(9): 2429-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27401229

RESUMO

If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations of selection, the proportion of bank voles (Myodes [=Clethrionomys] glareolus) showing predatory behavior was five times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system. Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the experiments and analyses were performed in the same methodological framework. The number of genes that changed expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate populations but also multiple quantitative traits.


Assuntos
Adaptação Fisiológica/genética , Arvicolinae/genética , Comportamento Predatório/fisiologia , Animais , Evolução Biológica , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Hipocampo , Masculino , Modelos Animais , Fenótipo , Seleção Genética , Transcriptoma
15.
Mol Biol Evol ; 32(6): 1461-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25739734

RESUMO

Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distinguished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed highest differentiation in allele frequencies between selected and control lines we identified, using information about gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a natural population, the amount and the spectrum of variation available for selection probably closely approximated that typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the molecular basis of complex adaptations occurring in natural vertebrate populations.


Assuntos
Arvicolinae/genética , Redes e Vias Metabólicas/genética , Seleção Genética , Transcriptoma , Aerobiose/genética , Animais , Mapeamento Cromossômico , Evolução Molecular , Feminino , Regulação da Expressão Gênica , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Consumo de Oxigênio , Fenótipo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA