RESUMO
Cellular senescence is a complex stress response defined as an essentially irreversible cell cycle arrest mediated by the inhibition of cell cycle-specific cyclin dependent kinases. The imbalance in redox homeostasis and oxidative stress have been repeatedly observed as one of the hallmarks of the senescent phenotype. However, a large-scale study investigating protein oxidation and redox signaling in senescent cells in vitro has been lacking. Here we applied a proteome-wide analysis using SILAC-iodoTMT workflow to quantitatively estimate the level of protein sulfhydryl oxidation and proteome level changes in ionizing radiation-induced senescence (IRIS) in hTERT-RPE-1 cells. We observed that senescent cells mobilized the antioxidant system to buffer the increased oxidation stress. Among the antioxidant proteins with increased relative abundance in IRIS, a unique 1-Cys peroxiredoxin family member, peroxiredoxin 6 (PRDX6), was identified as an important contributor to protection against oxidative stress. PRDX6 silencing increased ROS production in senescent cells, decreased their resistance to oxidative stress-induced cell death, and impaired their viability. Subsequent SILAC-iodoTMT and secretome analysis after PRDX6 silencing showed the downregulation of PRDX6 in IRIS affected protein secretory pathways, decreased expression of extracellular matrix proteins, and led to unexpected attenuation of senescence-associated secretory phenotype (SASP). The latter was exemplified by decreased secretion of pro-inflammatory cytokine IL-6 which was also confirmed after treatment with an inhibitor of PRDX6 iPLA2 activity, MJ33. In conclusion, by combining different methodological approaches we discovered a novel role of PRDX6 in senescent cell viability and SASP development. Our results suggest PRDX6 could have a potential as a drug target for senolytic or senomodulatory therapy.
Assuntos
Citocinas , Peroxirredoxina VI , Senescência Celular/fisiologia , Citocinas/metabolismo , Oxirredução , Estresse Oxidativo , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismoRESUMO
Serrated adenocarcinoma (SAC) and colorectal carcinomas showing histological and molecular features of high-level of microsatellite instability (hmMSI-H) are both end points of the serrated pathway of colorectal carcinogenesis. Despite common features (right-sided location, CpG island methylation phenotype and BRAF mutation) there are no studies comparing the microRNA (miRNA) expression profiles in SACs and hmMSI-H. The microtranscriptome from 12 SACs and 8 hmMSI-H were analysed using Affymetrix GeneChip miRNA 3.0 arrays and differentially enriched functions involving immune response were observed from this comparison. miR-181a-2* was found significantly more expressed in hmMSI-H than in SAC and higher expression of this miRNA in microsatellite unstable colorectal cancer were corroborated by Real-Time PCR in an extended series (61 SAC, 21 hmMSI-H). An analysis of genes possibly regulated by miR-181a-2* was carried out and, amongst these, an inverse correlation of NAMPT with miR-181a-2* expression was observed, whereas, for TRAF1 and SALL1, additional regulation mechanisms involving CpG island methylation were observed. miR-181a-2* is associated with particular histological and molecular features of colorectal carcinomas within the serrated pathological pathway and might play a role in the immune responses of microsatellite instability carcinomas.
Assuntos
Carcinoma/metabolismo , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Instabilidade de Microssatélites , Idoso , Carcinoma/genética , Carcinoma/fisiopatologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Ilhas de CpG , Citocinas/genética , Citocinas/metabolismo , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Masculino , MicroRNAs/genética , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fator 1 Associado a Receptor de TNF/genética , Fator 1 Associado a Receptor de TNF/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Under normal conditions, the cellular redox status is maintained in a steady state by reduction and oxidation processes. These redox alterations in the cell are mainly sensed by protein thiol residues of cysteines thus regulating protein function. The imbalance in redox homeostasis may therefore regulate protein turnover either directly by redox modulating of transcription factors or indirectly by the degradation of damaged proteins due to oxidation. A new analytical method capable of simultaneously assessing cellular protein expression and cysteine oxidation would provide a valuable tool for the field of cysteine-targeted biology. Here, we show a workflow based on protein quantification using metabolic labeling and determination of cysteine oxidation using reporter ion quantification. We applied this approach to determine protein and redox changes in cells after 5-min, 60-min and 32-h exposure to H2O2, respectively. Based on the functional analysis of our data, we confirmed a biological relevance of this approach and its applicability for parallel mapping of cellular proteomes and redoxomes under diverse conditions. In addition, we revealed a specific pattern of redox changes in peroxiredoxins in a short time-interval cell exposure to H2O2. Overall, our present study offers an innovative, versatile experimental approach to the multifaceted assessment of cellular proteome and its redox status, with broad implications for biomedical research towards a better understanding of organismal physiology and diverse disease conditions.