Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 133(7): 072501, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39213556

RESUMO

Isomer spectroscopy of heavy neutron-rich nuclei beyond the N=126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in ^{213}Tl and 874(5) keV in ^{215}Tl. The measured half-lives of 1.34(5) ms in ^{213}Tl and 3.0(3) ms in ^{215}Tl suggest spins and parities 11/2^{-} with the single proton-hole configuration πh_{11/2} as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2^{+}, interpreted as arising from a single πs_{1/2} proton hole coupled to the 8^{+} seniority isomer in the ^{A+1}Pb cores. The lowering of the 11/2^{-} states is ascribed to an increase of the πh_{11/2} proton effective single-particle energy as the second νg_{9/2} orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the πh_{11/2} and νg_{9/2} orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N>126 nuclear region below doubly magic ^{208}Pb.

2.
Phys Rev Lett ; 133(2): 022502, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39073976

RESUMO

The nuclear two-photon or double-gamma (2γ) decay is a second-order electromagnetic process whereby a nucleus in an excited state emits two gamma rays simultaneously. To be able to directly measure the 2γ decay rate in the low-energy regime below the electron-positron pair-creation threshold, we combined the isochronous mode of a storage ring with Schottky resonant cavities. The newly developed technique can be applied to isomers with excitation energies down to ∼100 keV and half-lives as short as ∼10 ms. The half-life for the 2γ decay of the first-excited 0^{+} state in bare ^{72}Ge ions was determined to be 23.9(6) ms, which strongly deviates from expectations.

3.
Phys Rev Lett ; 130(24): 242501, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390416

RESUMO

Excited-state spectroscopy from the first experiment at the Facility for Rare Isotope Beams (FRIB) is reported. A 24(2)-µs isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ rays in coincidence with ^{32}Na nuclei. This is the only known microsecond isomer (1 µs≤T_{1/2}<1 ms) in the region. This nucleus is at the heart of the N=20 island of shape inversion and is at the crossroads of the spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to ^{32}Mg, ^{32}Mg+π^{-1}+ν^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of ^{32}Mg, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2^{+} state at 885 keV and a low-lying shape-coexisting 0_{2}^{+} state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in ^{32}Na: a 6^{-} spherical shape isomer that decays by E2 or a 0^{+} deformed spin isomer that decays by M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.


Assuntos
Núcleo Celular , Coração , Isótopos , Nêutrons
4.
Phys Rev Lett ; 131(26): 262701, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215364

RESUMO

Nuclear isomer effects are pivotal in understanding nuclear astrophysics, particularly in the rapid neutron-capture process where the population of metastable isomers can alter the radioactive decay paths of nuclei produced during astrophysical events. The ß-decaying isomer ^{128m}Sb was identified as potentially impactful since the ß-decay pathway along the A=128 isobar funnels into this state bypassing the ground state. We report the first direct mass measurements of the ^{128}Sb isomer and ground state using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. We find mass excesses of -84564.8(25) keV and -84608.8(21) keV, respectively, resulting in an excitation energy for the isomer of 43.9(33) keV. These results provide the first key nuclear data input for understanding the role of ^{128m}Sb in nucleosynthesis, and we show that it will influence the flow of the rapid neutron-capture process.

5.
Phys Rev Lett ; 129(21): 212501, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36461950

RESUMO

New half-lives for exotic isotopes approaching the neutron drip-line in the vicinity of N∼28 for Z=12-15 were measured at the Facility for Rare Isotope Beams (FRIB) with the FRIB decay station initiator. The first experimental results are compared to the latest quasiparticle random phase approximation and shell-model calculations. Overall, the measured half-lives are consistent with the available theoretical descriptions and suggest a well-developed region of deformation below ^{48}Ca in the N=28 isotones. The erosion of the Z=14 subshell closure in Si is experimentally confirmed at N=28, and a reduction in the ^{38}Mg half-life is observed as compared with its isotopic neighbors, which does not seem to be predicted well based on the decay energy and deformation trends. This highlights the need for both additional data in this very exotic region, and for more advanced theoretical efforts.

6.
Phys Rev Lett ; 127(20): 202501, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860042

RESUMO

Two long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-µs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility. The experiments have established the existence of two states in ^{185}Bi; the short-lived T_{1/2}=2.8_{-1.0}^{+2.3} µs, proton- and α-decaying ground state, and a 58(2)-µs γ-decaying isomer, the half-life of which was previously attributed to the ground state. The reassignment of the ground-state lifetime results in a proton-decay spectroscopic factor close to unity and represents the only known example of a ground-state proton decay to a daughter nucleus (^{184}Pb) with a major shell closure. The data also demonstrate that the ordering of low- and high-spin states in ^{185}Bi is reversed relative to the heavier odd-A Bi isotopes, with the intruder-based 1/2^{+} configuration becoming the ground, similar to the lightest At nuclides.

7.
Phys Rev Lett ; 125(19): 192505, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216598

RESUMO

Mass-separated ^{187}Ta_{114} in a high-spin isomeric state has been produced for the first time by multinucleon transfer reactions, employing an argon gas-stopping cell and laser ionization. Internal γ rays revealed a T_{1/2}=7.3±0.9 s isomer at 1778±1 keV, which decays through a rotational band with perturbations associated with the approach to a prolate-oblate shape transition. Model calculations show less influence from triaxiality compared to heavier elements in the same mass region. The isomer-decay reduced E2 hindrance factor f_{ν}=27±1 supports the interpretation that axial symmetry is approximately conserved.

8.
Phys Rev Lett ; 125(10): 102502, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955302

RESUMO

The low-spin structure of the semimagic ^{64}Ni nucleus has been considerably expanded: combining four experiments, several 0^{+} and 2^{+} excited states were identified below 4.5 MeV, and their properties established. The Monte Carlo shell model accounts for the results and unveils an unexpectedly complex landscape of coexisting shapes: a prolate 0^{+} excitation is located at a surprisingly high energy (3463 keV), with a collective 2^{+} state 286 keV above it, the first such observation in Ni isotopes. The evolution in excitation energy of the prolate minimum across the neutron N=40 subshell gap highlights the impact of the monopole interaction and its variation in strength with N.

9.
Phys Rev Lett ; 124(25): 252702, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639762

RESUMO

The discovery of presolar grains in primitive meteorites has initiated a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical ^{33}Cl(p,γ)^{34}Ar reaction is expected to play a decisive role. As such, we have performed a detailed γ-ray spectroscopy study of ^{34}Ar. Excitation energies have been measured with high precision and spin-parity assignments for resonant states, located above the proton threshold in ^{34}Ar, have been made for the first time. Uncertainties in the ^{33}Cl(p,γ) reaction have been dramatically reduced and the results indicate that a newly identified ℓ=0 resonance at E_{r}=396.9(13) keV dominates the entire rate for T=0.25-0.40 GK. Furthermore, nova hydrodynamic simulations based on the present work indicate an ejected ^{32}S/^{33}S abundance ratio distinctive from type-II supernovae and potentially compatible with recent measurements of a presolar grain.

10.
Phys Rev Lett ; 124(5): 052501, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083900

RESUMO

The rare phenomenon of nuclear wobbling motion has been investigated in the nucleus ^{187}Au. A longitudinal wobbling-bands pair has been identified and clearly distinguished from the associated signature-partner band on the basis of angular distribution measurements. Theoretical calculations in the framework of the particle rotor model are found to agree well with the experimental observations. This is the first experimental evidence for longitudinal wobbling bands where the expected signature partner band has also been identified, and establishes this exotic collective mode as a general phenomenon over the nuclear chart.

11.
Phys Rev Lett ; 123(10): 102501, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573317

RESUMO

An extensive, model-independent analysis of the nature of triaxial deformation in ^{76}Ge, a candidate for neutrinoless double-beta (0νßß) decay, was carried out following multistep Coulomb excitation. Shape parameters deduced on the basis of a rotational-invariant sum-rule analysis provided considerable insight into the underlying collectivity of the ground-state and γ bands. Both sequences were determined to be characterized by the same ß and γ deformation parameter values. In addition, compelling evidence for low-spin, rigid triaxial deformation in ^{76}Ge was obtained for the first time from the analysis of the statistical fluctuations of the quadrupole asymmetry deduced from the measured E2 matrix elements. These newly determined shape parameters are important input and constraints for calculations aimed at providing, with suitable accuracy, the nuclear matrix elements relevant to 0νßß.

12.
Phys Rev Lett ; 122(21): 212502, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283301

RESUMO

The ß-delayed γ-ray spectroscopy of neutron-rich ^{123,125}Ag isotopes is investigated at the Radioactive Isotope Beam Factory of RIKEN, and the long-predicted 1/2^{-} ß-emitting isomers in ^{123,125}Ag are identified for the first time. With the new experimental results, the systematic trend of energy spacing between the lowest 9/2^{+} and 1/2^{-} levels is extended in Ag isotopes up to N=78, providing a clear signal for the reduction of the Z=40 subshell gap in Ag towards N=82. Shell-model calculations with the state-of-the-art V_{MU} plus M3Y spin-orbit interaction give a satisfactory description of the low-lying states in ^{123,125}Ag. The tensor force is found to play a crucial role in the evolution of the size of the Z=40 subshell gap. The observed inversion of the single-particle levels around ^{123}Ag can be well interpreted in terms of the monopole shift of the π1g_{9/2} orbitals mainly caused by the increasing occupation of ν1h_{11/2} orbitals.

13.
Appl Radiat Isot ; 145: 106-108, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30593936

RESUMO

Gamma rays following the ß- decay of the 245Am radionuclide (T1/2 = 2.05 h) were measured in early 1970s with a co-axial Ge(Li) detector using a chemically and isotopically pure, mass-separated 245Am source. These data were analyzed in the present work where several weak γ rays in 245Cm were identified. The 245Am decay scheme was deduced and extended when compared to the previously known one.

14.
Phys Rev Lett ; 120(21): 212501, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883168

RESUMO

A sequence of low-energy levels in _{32}^{78}Ge_{46} has been identified with spins and parity of 2^{+}, 3^{+}, 4^{+}, 5^{+}, and 6^{+}. Decays within this band proceed strictly through ΔJ=1 transitions, unlike similar sequences in neighboring Ge and Se nuclei. Above the 2^{+} level, members of this sequence do not decay into the ground-state band. Moreover, the energy staggering of this sequence has the phase that would be expected for a γ-rigid structure. The energies and branching ratios of many of the levels are described well by shell-model calculations. However, the calculated reduced transition probabilities for the ΔJ=2 in-band transitions imply that they should have been observed, in contradiction with the experiment. Within the calculations of Davydov, Filippov, and Rostovsky for rigid-triaxial rotors with γ=30°, there are sequences of higher-spin levels connected by strong ΔJ=1 transitions which decay in the same manner as those observed experimentally, yet are calculated at too high an excitation energy.

15.
Phys Rev Lett ; 120(18): 182502, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775351

RESUMO

The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A∼160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2^{+} levels in some even-even nuclei at N=98. In order to address these issues, mass and ß-decay spectroscopy measurements of the ^{160}Eu_{97} and ^{162}Eu_{99} nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (ß_{2}∼0.3) is discussed in relation to the unusual phenomena observed at this neutron number.

16.
Phys Rev Lett ; 118(15): 152504, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452498

RESUMO

Despite the more than 1 order of magnitude difference between the measured dipole moments in ^{144}Ba and ^{146}Ba, the octupole correlations in ^{146}Ba are found to be as strong as those in ^{144}Ba with a similarly large value of B(E3;3^{-}→0^{+}) determined as 48(+21-29) W.u. The new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations.

17.
Phys Rev Lett ; 118(7): 072701, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28256889

RESUMO

The ß-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of ß-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.

18.
Rep Prog Phys ; 79(7): 076301, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27243336

RESUMO

The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with [Formula: see text]. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

19.
Phys Rev Lett ; 116(11): 112503, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035298

RESUMO

The neutron-rich nucleus ^{144}Ba (t_{1/2}=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV ^{144}Ba beam on a 1.0-mg/cm^{2} ^{208}Pb target. The measured value of the matrix element, ⟨3_{1}^{-}∥M(E3)∥0_{1}^{+}⟩=0.65(+17/-23) eb^{3/2}, corresponds to a reduced B(E3) transition probability of 48(+25/-34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA