Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(24): 6512-6515, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099786

RESUMO

We have introduced a nanometer-scale non-contact displacement sensing method that relies on phase-diversity optical digital coherent detection. In our prior work, we used a conventional setup involving a 90°optical hybrid, two balanced amplified photodetectors (BAPs), and a narrow-linewidth (NLW) laser, which is complex and costly. However, in this paper, we have streamlined the system configuration by employing alternating quadrature phase modulation (AQPM) reference light, implemented using a phase modulator and a BAP. Moreover, we've employed an economical distributed feedback (DFB) laser, enabling us to achieve displacement sensing at 1.6 nm with a resolution of 0.6 nm. It is notable that there is some degradation in the performance due to the phase noise compared to the NLW laser, which achieves a displacement sensing down to 0.6 nm with a 0.2 nm resolution. Nevertheless, the DFB-AQPM system holds a significant potential for cost-effective, high-resolution nanometer-scale sensing applications.

2.
Animals (Basel) ; 13(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37370449

RESUMO

Cytochrome P450 is an important enzyme that metabolizes a variety of chemicals, including exogenous substances, such as drugs and environmental chemicals, and endogenous substances, such as steroids, fatty acids, and cholesterol. Some CYPs show interspecific differences in terms of genetic variation. As little is known about the mechanisms of elephant metabolism, we carried out a comparative genomic and phylogenetic analysis of CYP in elephants. Our results suggest that elephant CYP genes have undergone independent duplication, particularly in the CYP2A, CYP2C, and CYP3A genes, a unique cluster specific to elephant species. However, while CYP2E and CYP4A were conserved in other Afrotheria taxa, their decay in elephants resulted in genetic dysfunction (pseudogene). These findings outline several remarkable characteristics of elephant CYP1-4 genes and provide new insights into elephant xenobiotic metabolism. Further functional investigations are necessary to characterize elephant CYP, including expression patterns and interactions with drugs and sensitivities to other chemicals.

3.
Opt Express ; 31(2): 2566-2583, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785267

RESUMO

We experimentally demonstrated and quantitatively evaluated a non-contact nanometer-displacement measurement using phase-diversity optical digital coherent detection implemented by a 90 ° optical hybrid and a narrow-linewidth probe laser without fine-tuning of optical path length difference (OPD). Combined with a comb filter, the system exhibits 99.99% linearity detection with a scale and resolution of approximately 7 nm and 2 nm respectively, as well as a wideband vibration of 5.85 MHz. We also experimentally analyzed the effect of noise arising from the OPD and demonstrated the detection of displacement down to 85 nm with a resolution of 24 nm at an OPD of 342 cm.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36563948

RESUMO

Soricidae spp. (shrews) play an essential role in soil ecosystems and, due to their habitat and behavior, are exposed to soil pollutants, such as pesticides. Still, toxicity risk in Soricidae spp. has not been appropriately assessed. In this study, the musk shrew (Suncus murinus) was used as a model organism for toxicity assessment in Soricidae. Considering their carnivorous diet, it is reasonable to assume that the musk shrew has unique metabolic traits that are different from those of other common experimental models. This study describes the cytochrome P450 (CYP)-dependent metabolism affected by acetamiprid (ACP), a neonicotinoid insecticide. Pharmacokinetics analysis, an in vitro metabolic assay, and genetic analysis of CYP were performed and compared with data from mice and rats. Through phylogenetic and syntenic analyses, three families of CYP were identified in the musk shrew. Pharmacokinetic analysis showed that the blood concentration of ACP decreased more quickly in musk shrews than in mice. Moreover, the in vitro metabolic assay suggested more efficient metabolic responses toward ACP in musk shrews than in mice or rats. One of the CYP2A isoforms in musk shrews might be linked to a better ACP metabolism. From the results above, we describe novel metabolic traits of the musk shrew. Future research on recombinant CYP enzymes is necessary to fully understand CYP-dependent metabolism of xenobiotics in musk shrews.


Assuntos
Ecossistema , Musaranhos , Animais , Ratos , Camundongos , Musaranhos/genética , Musaranhos/metabolismo , Filogenia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-36182081

RESUMO

Wild carnivorans are one of the most important species due to their high positions in the food chain. They are also highly affected by numerous environmental contaminants through bioaccumulation and biomagnification. Xenobiotic metabolism is a significant chemical defense system from xenobiotics because it degrades the activity of a wide range of chemicals, generally into less active forms, resulting in their deactivation. Sulfotransferases (SULTs) are one of the most important xenobiotic metabolic enzymes, which catalyze the sulfonation of a variety of endogenous and exogenous chemicals, such as hormones, neurotransmitters, and a wide range of xenobiotic compounds. Although SULTs are of such high importance, little research has focused on these enzymes in wild carnivorans. In this study, we clarified the genetic properties of SULTs in a wide range of mammals, focusing on carnivorans, using in silico genetic analyses. We found genetic deficiencies of SULT1E1 and SULT1D1 isoforms in all pinnipeds analyzed and nonsense mutations in SULT1Cs in several carnivorans including pinnipeds. We further investigated the enzymatic activity of SULT1E1 in vitro using liver cytosols from pinnipeds. Using a SULT1E1 probe substrate, we found highly limited estradiol sulfonation in pinnipeds, whereas other mammals had relatively high sulfation. These results suggest that pinnipeds have severely or completely absent SULT1E1 activity, which importantly catalyzes the metabolism of estrogens, drugs, and environmental toxins. This further implies a high susceptibility to a wide range of xenobiotics in these carnivorans, which are constantly exposed to environmental chemicals throughout their lifetime.


Assuntos
Caniformia , Xenobióticos , Animais , Xenobióticos/metabolismo , Caniformia/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Inativação Metabólica , Variação Genética
6.
Animals (Basel) ; 12(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359081

RESUMO

UDP-glucuronosyltransferases (UGTs) are one of the most important enzymes for xenobiotic metabolism or detoxification. Through duplication and loss of genes, mammals evolved the species-specific variety of UGT isoforms. Among mammals, Carnivora is one of the orders that includes various carnivorous species, yet there is huge variation of food habitat. Recently, lower activity of UGT1A and 2B were shown in Felidae and pinnipeds, suggesting evolutional loss of these isoforms. However, comprehensive analysis for genetic or evolutional features are still missing. This study was conducted to reveal evolutional history of UGTs in Carnivoran species. We found specific gene expansion of UGT1As in Canidae, brown bear and black bear. We also found similar genetic duplication in UGT2Bs in Canidae, and some Mustelidae and Ursidae. In addition, we discovered contraction or complete loss of UGT1A7-12 in phocids, some otariids, felids, and some Mustelids. These studies indicate that even closely related species have completely different evolution of UGTs and further imply the difficulty of extrapolation of the pharmacokinetics and toxicokinetic result of experimental animals into wildlife carnivorans.

7.
Animals (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290207

RESUMO

Cytochrome P450s are among the most important xenobiotic metabolism enzymes that catalyze the metabolism of a wide range of chemicals. Through duplication and loss events, CYPs have created their original feature of detoxification in each mammal. We performed a comprehensive genomic analysis to reveal the evolutionary features of the main xenobiotic metabolizing family: the CYP1-3 families in Carnivora. We found specific gene expansion of CYP2Cs and CYP3As in omnivorous animals, such as the brown bear, the black bear, the dog, and the badger, revealing their daily phytochemical intake as providing the causes of their evolutionary adaptation. Further phylogenetic analysis of CYP2Cs revealed Carnivora CYP2Cs were divided into CYP2C21, 2C41, and 2C23 orthologs. Additionally, CYP3As phylogeny also revealed the 3As' evolution was completely different to that of the Caniformia and Feliformia taxa. These studies provide us with fundamental genetic and evolutionary information on CYPs in Carnivora, which is essential for the appropriate interpretation and extrapolation of pharmacokinetics or toxicokinetic data from experimental mammals to wild Carnivora.

8.
Artigo em Inglês | MEDLINE | ID: mdl-30476594

RESUMO

Birds are exposed to many xenobiotics during their lifetime. For accurate prediction of xenobiotic-induced toxic effects on avian species, it is necessary to understand metabolic capacities in a comprehensive range of bird species. However, there is a lack of information about avian xenobiotic metabolizing enzymes (XMEs), particularly in wild birds. Uridine diphosphate glucuronosyltransferase (UGT) is an XME that plays an important role in phase II metabolism in the livers of mammals and birds. This study was performed to determine the characteristics of UGT1E isoform in avian species, those are related to mammals UGT 1A. To understand the characteristics of avian UGT1E isoforms, in vitro metabolic activity and genetic characteristics were investigated. Furthermore, mRNA expression levels of all chicken UGT1E isoforms were measured. On in vitro enzymatic analysis, the white-tailed eagle, great horned owl, and Humboldt penguin showed lower UGT-dependent activity than domestic birds. In synteny analysis, carnivorous birds were shown to have fewer UGT1E isoforms than herbivorous and omnivorous birds, which may explain why they have lower in vitro UGT activity. These observations suggested that raptors and seabirds, in which UGT activity is low, may be at high risk if exposed to elevated levels of xenobiotics in the environment. Phylogenetic analysis suggested that avian UGT1Es have evolved independently from mammalian UGT1As. We identified the important UGT isoforms, such as UGT1E13, and suspected their substrate specificities in avian xenobiotic metabolism by phylogenetic and quantitative real-time PCR analysis. This is the first report regarding the genetic characteristics and interspecies differences of UGT1Es in avian species.


Assuntos
Aves/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucuronosiltransferase/metabolismo , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Animais , Aves/metabolismo , Glucuronosiltransferase/genética , Microssomos Hepáticos/enzimologia , Filogenia , Especificidade da Espécie , Sintenia
9.
Artigo em Inglês | MEDLINE | ID: mdl-30176376

RESUMO

There have been many reports regarding toxic chemicals in birds. Chemicals are mainly metabolized in the liver through phase I oxidation by cytochrome P450 (CYP) and phase II conjugation by conjugated enzymes, such as UDP-glucuronosyltransferase (UGT), sulfotransferase (SULT), glutathione-S-transferase (GST), etc. Xenobiotic metabolism differs among bird species, but little detailed information is available. In the present study, the four-ring polycyclic aromatic hydrocarbon (PAH), pyrene, was used as a model xenobiotic to clarify the characteristics of xenobiotic metabolism in birds compared with laboratory animals by in vivo and in vitro studies. Plasma, bile, and excreta (urine and feces) were collected after oral administration of pyrene and analyzed to clarify xenobiotic metabolism ability in chickens and quails. Interestingly, pyrenediol-glucuronide sulfate (PYDOGS) and pyrenediol-diglucuronide (PYDOGG) were present in chickens and quails but not in rats. In addition, the area under the curve (AUC), maximum plasma concentration (Cmax), and time to maximum plasma concentration (Tmax) of pyrene-1-sulfate (PYOS) were higher than those of the parent molecule, pyrene, while the elimination half-life (t1/2) and mean residence time (MRT) were faster than those of the parent pyrene. With regard to sulfation of 1-hydroxypyrene (PYOH), the maximum velocity (Vmax) and Michaelis constant (Km) of rat liver cytosol were greater than those of chicken and quail liver cytosol. Furthermore, Vmax/Km of UGT activity in rat liver microsomes was also greater than those of chicken and quail liver microsomes. Characterization of xenobiotic metabolism revealed species differences between birds and mammals, raising concerns about exposure to various xenobiotics in the environment.


Assuntos
Galinhas/fisiologia , Coturnix/fisiologia , Fígado/enzimologia , Microssomos Hepáticos/enzimologia , Modelos Biológicos , Xenobióticos/toxicidade , Animais , Animais Endogâmicos , Bile/metabolismo , Galinhas/sangue , Galinhas/metabolismo , Galinhas/urina , Coturnix/sangue , Coturnix/metabolismo , Coturnix/urina , Citosol/enzimologia , Citosol/metabolismo , Fezes/química , Glucuronídeos/sangue , Glucuronídeos/metabolismo , Glucuronídeos/urina , Meia-Vida , Fígado/metabolismo , Masculino , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Microssomos Hepáticos/metabolismo , Pirenos/sangue , Pirenos/metabolismo , Pirenos/toxicidade , Pirenos/urina , Ratos , Ratos Wistar , Especificidade da Espécie , Toxicocinética , Xenobióticos/sangue , Xenobióticos/metabolismo , Xenobióticos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA