Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769134

RESUMO

The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.


Assuntos
Medicina , Neoplasias , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Microambiente Tumoral
2.
Biology (Basel) ; 11(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36009835

RESUMO

In this brief review, we attempt to demonstrate that the incompleteness of data, as well as the intrinsic heterogeneity of biological systems, may form very strong and possibly insurmountable barriers for researchers trying to decipher the mechanisms of the functioning of live systems. We illustrate this challenge using the two most studied organisms: E. coli, with 34.6% genes lacking experimental evidence of function, and C. elegans, with identified proteins for approximately 50% of its genes. Another striking example is an artificial unicellular entity named JCVI-syn3.0, with a minimal set of genes. A total of 31.5% of the genes of JCVI-syn3.0 cannot be ascribed a specific biological function. The human interactome mapping project identified only 5-10% of all protein interactions in humans. In addition, most of the available data are static snapshots, and it is barely possible to generate realistic models of the dynamic processes within cells. Moreover, the existing interactomes reflect the de facto interaction but not its functional result, which is an unpredictable emerging property. Perhaps the completeness of molecular data on any living organism is beyond our reach and represents an unsolvable problem in biology.

3.
Biomedicines ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884771

RESUMO

SOX9 is upregulated in the majority of pancreatic ductal adenocarcinoma cases. It is hypothesized that the increased expression of SOX9 is necessary for the formation and maintenance of tumor phenotypes in pancreatic cancer cells. In our research, we studied six pancreatic cancer cell lines, which displayed varying levels of differentiation and a range of oncogenic mutations. We chose the method of downregulation of SOX9 expression via siRNA transfection as the main method for investigating the functional role of the SOX9 factor in pancreatic cancer cells. We discovered that the downregulation of SOX9 expression in the cell lines leads to cell-line-specific changes in the expression levels of epithelial and mesenchymal protein markers. Additionally, the downregulation of SOX9 expression had a specific effect on the expression of pancreatic developmental master genes. SOX9 downregulation had the greatest effect on the expression levels of the protein regulators of cell proliferation. In three of the four cell lines studied, the transfection of siSOX9 led to a significant decrease in proliferative activity and to the activation of proapoptotic caspases in transfected cells. The acquired results demonstrate that the SOX9 protein exerts its multiple functions as a pleiotropic regulator of differentiation and a potential promoter of tumor growth in a cell-specific manner in pancreatic cancer cells.

4.
Biochemistry (Mosc) ; 87(2): 150-169, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35508902

RESUMO

The origin of genetic code and translation system is probably the central and most difficult problem in the investigations on the origin of life and one of the most complex problems in the evolutionary biology in general. There are multiple hypotheses on the emergence and development of existing genetic systems that propose the mechanisms for the origin and early evolution of genetic code, as well as for the emergence of replication and translation. Here, we discuss the most well-known of these hypotheses, although none of them provides a description of the early evolution of genetic systems without gaps and assumptions. The RNA world hypothesis is a currently prevailing scientific idea on the early evolution of biological and pre-biological structures, the main advantage of which is the assumption that RNAs as the first living systems were self-sufficient, i.e., capable of functioning as both catalysts and templates. However, this hypothesis has also significant limitations. In particular, no ribozymes with processive polymerase activity have been yet discovered or synthesized. Taking into account the mutual need of proteins and nucleic acids in each other in the current world, many authors propose the early evolution scenarios based on the co-evolution of these two classes of organic molecules. They postulate that the emergence of translation was necessary for the replication of nucleic acids, in contrast to the RNA world hypothesis, according to which the emergence of translation was preceded by the era of self-replicating RNAs. Although such scenarios are less parsimonious from the evolutionary point of view, since they require simultaneous emergence and evolution of two classes of organic molecules, as well as the emergence of synchronized replication and translation, their major advantage is that they explain the development of processive and much more accurate protein-dependent replication.


Assuntos
Evolução Molecular , RNA Catalítico , Código Genético , Proteínas , RNA/metabolismo , RNA Catalítico/genética
5.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502287

RESUMO

Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM-CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT-GM-CSF-danger signal system by means of artificial cancer specific promoters or a modified delivery system.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Imunoterapia/métodos , Neoplasias/terapia , Animais , Vacinas Anticâncer/farmacologia , Genes Transgênicos Suicidas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Neoplasias/imunologia , Terapia Viral Oncolítica/métodos , Pró-Fármacos/farmacologia , Timidina Quinase/genética , Timidina Quinase/farmacologia
6.
Cancers (Basel) ; 13(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34503200

RESUMO

Intercellular interactions involving adhesion factors are key operators in cancer progression. In particular, these factors are responsible for facilitating cell migration and metastasis. Strengthening of adhesion between tumor cells and surrounding cells or extracellular matrix (ECM), may provide a way to inhibit tumor cell migration. Recently, we demonstrated that PDX1 ectopic expression results in the reduction of pancreatic cancer line PANC-1 cell motility in vitro and in vivo, and we now provide experimental data confirming the hypothesis that suppression of migration may be related to the effect of PDX1 on cell adhesion. Cell migration analyses demonstrated decreased motility of pancreatic Colo357 and PANC-1 cell lines expressing PDX1. We observed decreased expression levels of genes associated with promoting cell migration and increased expression of genes negatively affecting cell motility. Expression of the EMT regulator genes was only mildly induced in cells expressing PDX1 during the simulation of the epithelial-mesenchymal transition (EMT) by the addition of TGFß1 to the medium. PDX1-expressing cancer cell lines showed increased cell adhesion to collagen type I, fibronectin, and poly-lysine. We conclude that ectopic expression of PDX1 reduces the migration potential of cancer cells, by increasing the adhesive properties of cells and reducing the sensitivity to TGFß1-induced EMT.

7.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804861

RESUMO

Cancer-associated fibroblasts (CAF) are attractive therapeutic targets in the tumor microenvironment. The possibility of using CAFs as a source of therapeutic molecules is a challenging approach in gene therapy. This requires transcriptional targeting of transgene expression by cis-regulatory elements (CRE). Little is known about which CREs can provide selective transgene expression in CAFs. We hypothesized that the promoters of FAP, CXCL12, IGFBP2, CTGF, JAG1, SNAI1, and SPARC genes, the expression of whose is increased in CAFs, could be used for transcriptional targeting. Analysis of the transcription of the corresponding genes revealed that unique transcription in model CAFs was characteristic for the CXCL12 and FAP genes. However, none of the promoters in luciferase reporter constructs show selective activity in these fibroblasts. The CTGF, IGFBP2, JAG1, and SPARC promoters can provide higher transgene expression in fibroblasts than in cancer cells, but the nonspecific viral promoters CMV, SV40, and the recently studied universal PCNA promoter have the same features. The patterns of changes in activity of various promoters relative to each other observed for human cell lines were similar to the patterns of activity for the same promoters both in vivo and in vitro in mouse models. Our results reveal restrictions and features for CAF transcriptional targeting.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Regiões Promotoras Genéticas , Transgenes , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Quimiocina CXCL12/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Endopeptidases , Gelatinases/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína Jagged-1/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Osteonectina/genética , Serina Endopeptidases/genética , Fatores de Transcrição da Família Snail/genética , Ativação Transcricional
8.
Cancer Manag Res ; 11: 7077-7087, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440095

RESUMO

Background: In cancer biology, metastasizing is one of the most poorly studied processes. Pancreatic ductal adenocarcinoma (PDAC) is characterized by early metastasis, which is the leading cause of death. The PDX1 protein is crucial for the development of cancer, and its low levels are characteristic of the most aggressive PDAC tumors. The PDX1 is a mediator of initiation and progression of PDAC. However, further studies are needed to elucidate the role of PDX1 in the cancer metastasis. Purpose: To confirm the hypothesis that PDX1 in PDAC plays suppressor role of epithelial-mesenchymal transition (EMT), and to study its possible ability to inhibit metastasis. Methods: A PDX1-overexpressing PDAC cell line was obtained by lentiviral transduction of PANC-1 cells. PDX1 overexpression was confirmed by RT-PCR and Western blotting. Effects of PDX1 ectopic expression on cell proliferation and motility were determined in PANC-1 cells using MTS, cell cycle analysis, transwell and wound-healing assay. EMT genes expression was analyzed in PDX1-overexpressing and Control PANC-1. Finally, the migration potential of pancreatic cancer cells expressing PDX1 was evaluated using a zebrafish embryo model. Results: The motility of human PDAC cells PANC-1 considerably decreased at ectopic expression of PDX1. The decreased expression of ZEB1, the key factor of EMT, and almost unchanged expression of the genes that characterize the epithelial state suggest a decrease in the EMT ability. Suppression of PDX1 expression by siRNA knockdown restored the PANC1 motility. Conclusion: The results obtained suggest a possible therapeutic use of PDX1 delivery into PDAC patients with a reduced or absent expression of PDX1 in the most aggressive tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA