RESUMO
Vanadium dioxide (VO2) is a strongly correlated material that exhibits the insulator-to-metal transition (IMT) near room temperature, which makes it a promising candidate for applications in nanophotonics or optoelectronics. However, creating VO2 nanostructures with the desired functionality can be challenging due to microscopic inhomogeneities that can significantly impact the local optical and electronic properties. Thin lamellas, produced by focused ion beam milling from a homogeneous layer, provide a useful prototype for studying VO2 at the truly microscopic level using a scanning transmission electron microscope (STEM). High-resolution imaging is used to identify structural inhomogeneities while electron energy-loss spectroscopy (EELS) supported by statistical analysis helps to detect V x O y stoichiometries with a reduced oxidation number of vanadium at the areas of thickness below 70 nm. On the other hand, the thicker areas are dominated by vanadium dioxide, where the signatures of the IMT are detected in both core-loss and low-loss EELS experiments with in situ heating. The experimental results are interpreted with ab initio and semi-classical calculations. This work shows that structural inhomogeneities such as pores and cracks present no harm to the desired optical properties of VO2 samples.
RESUMO
Narrow gaps between plasmon-supporting materials can confine infrared electromagnetic energy at the nanoscale, thus enabling applications in areas such as optical sensing. However, in nanoparticle dimers, the nature of the transition between touching (zero gap) and nearly nontouching (nonzero gap â²15 nm) regimes is still a subject of debate. Here, we observe both singular and nonsingular transitions in infrared plasmons confined to dimers of fluorine-doped indium oxide nanocubes when moving from touching to nontouching configurations depending on the dimensionality of the contact region. Through spatially resolved electron energy-loss spectroscopy, we find a continuous spectral evolution of the lowest-order plasmon mode across the transition for finite touching areas, in excellent agreement with the simulations. This behavior challenges the widely accepted idea that a singular transition always emerges in the near-touching regime of plasmonic particle dimers. The apparent contradiction is resolved by theoretically examining different types of gap morphologies, revealing that the presence of a finite touching area renders the transition nonsingular, while one-dimensional and point-like contacts produce a singular behavior in which the lowest-order dipolar mode in the touching configuration, characterized by a net induced charge in each of the particles, becomes unphysical as soon as they are separated. Our results provide valuable insights into the nature of dimer plasmons in highly doped semiconductors.
RESUMO
The multi-principal element alloy nanoparticles (MPEA NPs), a new class of nanomaterials, present a highly rewarding opportunity to explore new or vastly different functional properties than the traditional mono/bi/multimetallic nanostructures due to their unique characteristics of atomic-level homogeneous mixing of constituent elements in the nanoconfinements. Here, the successful creation of NiCoCr nanoparticles, a well-known MPEA system is reported, using ultrafast nanosecond laser-induced dewetting of alloy thin films. Nanoparticle formation occurs by spontaneously breaking the energetically unstable thin films in a melt state under laser-induced hydrodynamic instability and subsequently accumulating in a droplet shape via surface energy minimization. While NiCoCr alloy shows a stark contrast in physical properties compared to individual metallic constituents, i.e., Ni, Co, and Cr, yet the transient nature of the laser-driven process facilitates a homogeneous distribution of the constituents (Ni, Co, and Cr) in the nanoparticles. Using high-resolution chemical analysis and scanning nanodiffraction, the environmental stability and grain arrangement in the nanoparticles are further investigated. Thermal transport simulations reveal that the ultrashort (≈100 ns) melt-state lifetime of NiCoCr during the dewetting event helps retain the constituent elements in a single-phase solid solution with homogenous distribution and opens the pathway to create the unique MPEA nanoparticles with laser-induced dewetting process.
RESUMO
Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.
RESUMO
Single-pixel imaging, originally developed in light optics, facilitates fast three-dimensional sample reconstruction as well as probing with light wavelengths undetectable by conventional multi-pixel detectors. However, the spatial resolution of optics-based single-pixel microscopy is limited by diffraction to hundreds of nanometers. Here, we propose an implementation of single-pixel imaging relying on attainable modifications of currently available ultrafast electron microscopes in which optically modulated electrons are used instead of photons to achieve subnanometer spatially and temporally resolved single-pixel imaging. We simulate electron beam profiles generated by interaction with the optical field produced by an externally programmable spatial light modulator and demonstrate the feasibility of the method by showing that the sample image and its temporal evolution can be reconstructed using realistic imperfect illumination patterns. Electron single-pixel imaging holds strong potential for application in low-dose probing of beam-sensitive biological and molecular samples, including rapid screening during in situ experiments.
RESUMO
The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.
RESUMO
Doping inhomogeneities in solids are not uncommon, but their microscopic observation and understanding are limited due to the lack of bulk-sensitive experimental techniques with high enough spatial and spectral resolution. Here, we demonstrate nanoscale imaging of both dopants and free charge carriers in La-doped BaSnO3 (BLSO) using high-resolution electron energy-loss spectroscopy (EELS). By analyzing high- and low-energy excitations in EELS, we reveal chemical and electronic inhomogeneities within a single BLSO nanocrystal. The inhomogeneous doping leads to distinctive localized infrared surface plasmons, including a previously unobserved plasmon mode that is highly confined between high- and low-doping regions. We further quantify the carrier density, effective mass, and dopant activation percentage by EELS and transport measurements on the bulk single crystals of BLSO. These results not only represent a practical approach for studying heterogeneities in solids and understanding structure-property relationships at the nanoscale, but also demonstrate the possibility of infrared plasmon tuning by leveraging nanoscale doping texture.
RESUMO
The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entanglement with nanocavity modes opens appealing opportunities associated with the strong interaction capabilities of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and nondegenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated entanglement can be further propagated through its electron component to extend quantum interactions beyond existing protocols.
RESUMO
BaSnO3 exhibits the highest carrier mobility among perovskite oxides, making it ideal for oxide electronics. Collective charge carrier oscillations known as plasmons are expected to arise in this material, thus providing a tool to control the nanoscale optical field for optoelectronics applications. Here, the existence of relatively long-lived plasmons supported by high-mobility charge carriers in La-doped BaSnO3 (BLSO) is demonstrated. By exploiting the high spatial and energy resolution of electron energy-loss spectroscopy with a focused beam in a scanning transmission electron microscope, the dispersion, confinement ratio, and damping of infrared localized surface plasmons (LSPs) in BLSO nanoparticles are systematically investigated. It is found that LSPs in BLSO exhibit a high degree of spatial confinement compared to those sustained by noble metals and have relatively low losses and high quality factors with respect to other doped oxides. Further analysis clarifies the relation between plasmon damping and carrier mobility in BLSO. The results support the use of nanostructured degenerate semiconductors for plasmonic applications in the infrared region and establish a solid alternative to more traditional plasmonic materials.
RESUMO
Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV-sub-nm energy-space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) for structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest subtesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.
RESUMO
Hyperbolic phonon polaritons (HPhPs) in hexagonal boron nitride (hBN) enable the direct manipulation of mid-infrared light at nanometer scales, many orders of magnitude below the free-space light wavelength. High-resolution monochromated electron energy-loss spectroscopy (EELS) facilitates measurement of excitations with energies extending into the mid-infrared while maintaining nanoscale spatial resolution, making it ideal for detecting HPhPs. The electron beam is a precise source and probe of HPhPs, which allows the observation of nanoscale confinement in HPhP structures and directly extract hBN polariton dispersions for both modes in the bulk of the flake and modes along the edge. The measurements reveal technologically important nontrivial phenomena, such as localized polaritons induced by environmental heterogeneity, enhanced and suppressed excitation due to 2D interference, and strong modification of high-momenta excitations such as edge-confined polaritons by nanoscale heterogeneity on edge boundaries. The work opens exciting prospects for the design of real-world optical mid-infrared devices based on hyperbolic polaritons.
RESUMO
Nonlinear light-matter interactions in structured materials are the source of exciting properties and enable vanguard applications in photonics. However, the magnitude of nonlinear effects is generally small, thus requiring high optical intensities for their manifestation at the nanoscale. Here, we reveal a large nonlinear response of monolayer hexagonal boron nitride (hBN) in the mid-infrared phonon-polariton region, triggered by the strongly anharmonic potential associated with atomic vibrations in this material. We present robust first-principles theory predicting a threshold light field â¼24 MV/m to produce order-unity effects in Kerr nonlinearities and harmonic generation, which are made possible by a combination of the long lifetimes exhibited by optical phonons and the strongly asymmetric landscape of the configuration energy in hBN. We further foresee polariton blockade at the few-quanta level in nanometer-sized structures. In addition, by mixing static and optical fields, the strong nonlinear response of monolayer hBN gives rise to substantial frequency shifts of optical phonon modes, exceeding their spectral width for in-plane DC fields that are attainable using lateral gating technology. We therefore predict a practical scheme for electrical tunability of the vibrational modes with potential interest in mid-infrared optoelectronics. The strong nonlinear response, low damping, and robustness of hBN polaritons set the stage for the development of applications in light modulation, sensing, and metrology, while triggering the search for an intense vibrational nonlinear response in other ionic materials.
RESUMO
Transmission electron microscopy and spectroscopy currently enable the acquisition of spatially resolved spectral information from a specimen by focusing electron beams down to a sub-angstrom spot and then analyzing the energy of the inelastically scattered electrons with few-meV energy resolution. This technique has recently been used to experimentally resolve vibrational modes in 2D materials emerging at mid-infrared frequencies. Here, on the basis of first-principles theory, we demonstrate the possibility of identifying single isotope atom impurities in a nanostructure through the trace that they leave in the spectral and spatial characteristics of the vibrational modes. Specifically, we examine a hexagonal boron nitride molecule as an example of application, in which the presence of a single isotope impurity is revealed through changes in the electron spectra, as well as in the space-, energy-, and momentum-resolved inelastic electron signal. We compare these results with conventional far-field spectroscopy, showing that electron beams offer superior spatial resolution combined with the ability to probe the complete set of vibrational modes, including those that are optically dark. Our study is relevant for the atomic-scale characterization of vibrational modes in materials of interest, including a detailed mapping of isotope distributions.
RESUMO
We exploit free-space interactions between electron beams and tailored light fields to imprint on-demand phase profiles on the electron wave functions. Through rigorous semiclassical theory involving a quantum description of the electrons, we show that monochromatic optical fields focused in vacuum can be used to correct electron beam aberrations and produce selected focal shapes. Stimulated elastic Compton scattering is exploited to imprint the required electron phase, which is proportional to the integral of the optical field intensity along the electron path and depends on the transverse beam position. The required light intensities are attainable in currently available ultrafast electron microscope setups, thus opening the field of free-space optical manipulation of electron beams.
RESUMO
The interaction between free electrons and optical near fields is attracting increasing attention as a way to manipulate the electron wave function in space, time, and energy. Relying on currently attainable experimental capabilities, we design optical near-field plates to imprint a lateral phase on the electron wave function that can largely correct spherical aberration without the involvement of electric or magnetic lenses in the electron optics, and further generate on-demand lateral focal spot profiles. Our work introduces a disruptive and powerful approach toward aberration correction based on light-electron interactions that could lead to compact and versatile time-resolved free-electron microscopy and spectroscopy.
RESUMO
Nanoscale gaps between metals can strongly confine electromagnetic fields that enable efficient electromagnetic energy conversion and coupling to nanophotonic structures. In particular, the gap formed by depositing a metallic particle on a metallic substrate produces coupling of localized particle plasmons to propagating surface plasmon polaritons (SPPs). Understanding and controlling the phase of such coupling is essential for the design of devices relying on nanoparticles coupled through SPPs. Here we demonstrate the experimental visualization of the phase associated with the plasmonic field of metallic particle-surface composites through nanoscopically and spectroscopically resolved cathodoluminescence using a scanning transmission electron microscope. Specifically, we study the interference between the substrate transition radiation and the field resulting from out-coupling of SPP excitation, therefore giving rise to angle-, polarization-, and energy-dependent photon emission fringe patterns from which we extract phase information. Our methods should be readily applicable to more complex nanostructures, thus providing direct experimental insight into nanoplasmonic near-fields with potential applications in improving plasmon-based devices.
RESUMO
The ability to examine the vibrational spectra of liquids with nanometer spatial resolution will greatly expand the potential to study liquids and liquid interfaces. In fact, the fundamental properties of water, including complexities in its phase diagram, electrochemistry, and bonding due to nanoscale confinement are current research topics. For any liquid, direct investigation of ordered liquid structures, interfacial double layers, and adsorbed species at liquid-solid interfaces are of interest. Here, a novel way of characterizing the vibrational properties of liquid water with high spatial resolution using transmission electron microscopy is reported. By encapsulating water between two sheets of boron nitride, the ability to capture vibrational spectra to quantify the structure of the liquid, its interaction with the liquid-cell surfaces, and the ability to identify isotopes including H2 O and D2 O using electron energy-loss spectroscopy is demonstrated. The electron microscope used here, equipped with a high-energy-resolution monochromator, is able to record vibrational spectra of liquids and molecules and is sensitive to surface and bulk morphological properties both at the nano- and micrometer scales. These results represent an important milestone for liquid and isotope-labeled materials characterization with high spatial resolution, combining nanoscale imaging with vibrational spectroscopy.
RESUMO
Electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) is becoming an important technique in spatially resolved spectral characterization of optical and vibrational properties of matter at the nanoscale. EELS has played a significant role in understanding localized polaritonic excitations in nanoantennas and also allows for studying molecular excitations in nanoconfined samples. Here we theoretically describe the interaction of a localized electron beam with molecule-covered polaritonic nanoantennas, and propose the concept of surface-enhanced molecular EELS exploiting the electromagnetic coupling between the nanoantenna and the molecular sample. Particularly, we study plasmonic and infrared phononic antennas covered by molecular layers, exhibiting either an excitonic or vibrational response. We demonstrate that EEL spectra of these molecule-antenna coupled systems exhibit Fano-like or strong coupling features, similar to the ones observed in far-field optical and infrared spectroscopy. EELS offers the advantage to acquire spectral information with nanoscale spatial resolution, and importantly, to control the antenna-molecule coupling on demand. Considering ongoing instrumental developments, EELS in STEM shows the potential to become a powerful tool for fundamental studies of molecules that are naturally or intentionally located on nanostructures supporting localized plasmon or phonon polaritons. Surface-enhanced EELS might also enable STEM-EELS applications such as remote- and thus damage-free-sensing of the excitonic and vibrational response of molecules, quantum dots, or 2D materials.
RESUMO
Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.