Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 225: 115060, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36701947

RESUMO

A highly stretchable and tissue-adhesive multifunctional sensor based on structurally engineered islets embedded in ultra-soft hydrogel is reported for monitoring of bladder activity in overactive bladder (OAB) induced rat and anesthetized pig. The use of hydrogel yielded a much lower sensor modulus (1 kPa) compared to that of the bladder (300 kPa), while the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) allowed firm attachment onto the bladder. The change in resistance of printed liquid metal particle thin-film lines under strain were used to detect bladder inflation and deflation; due to the high stretchability and reliability of the lines, surface strains of 200% could be measured repeatedly. Au electrodes coated with Platinum black were used to detect electromyography (EMG). These electrodes were placed on structurally engineered rigid islets so that no interfacial fracture occurs under high strains associated with bladder expansion. On the OAB induced rat, stronger signals (change in resistance and EMG root-mean-square) were detected near intra-bladder pressure maxima, thus showing correlation to bladder activity. Moreover, using robot-assisted laparoscopic surgery, the sensor was placed onto the bladder of an anesthetized pig. Under voiding and filling, bladder strain and EMG were once again monitored. These results confirm that our proposed sensor is a highly feasible, clinically relevant implantable device for continuous monitoring OAB for diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Adesivos Teciduais , Bexiga Urinária Hiperativa , Animais , Ratos , Suínos , Bexiga Urinária Hiperativa/diagnóstico , Bexiga Urinária Hiperativa/complicações , Hidrogéis , Reprodutibilidade dos Testes
2.
Int J Med Robot ; 18(4): e2402, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35384304

RESUMO

BACKGROUND: Commercialised laparoscopic surgical robotic systems require a large operating room and can only be used in large hospitals. If the robotic system is to be used in a small- or medium-sized hospital, the occupied volume must be reduced further. METHODS: In this paper, we propose a bed-mounted system that can be installed in a general operating room. Furthermore, we proposed a novel positioning arm suitable for a bed-mounted surgical robot system. RESULTS: The surgical possibility of the proposed bed-mounted system has been verified. Furthermore, the surgical possibility of the proposed system was confirmed using in vivo animal experiments. CONCLUSIONS: A bed-mounted laparoscopic robotic system and a novel positioning arm was proposed. The study's ultimate goal is to enable robotic surgery in small and medium-sized hospitals by introducing the proposed bed-mounted laparoscopic robot system, allowing many people to receive high-quality medical services.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Braço , Humanos
3.
Int J Med Robot ; 18(2): e2357, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34962681

RESUMO

BACKGROUND: Control of the joints of robotic surgical instruments is difficult owing to hysteresis, and tendon twisting due to axial rotation of surgical tools also causes hysteresis. Therefore, a new mechanism is needed to prevent tendon twisting. METHODS: Tendon tension and hysteresis change were analysed by observing the movement of the joint depending on whether the tendons twisted for the same input signal. An anti-twist tendon mechanism to prevent twisting was developed. A 3-mm needle driver applied with the proposed mechanism was manufactured. RESULTS: The anti-twist mechanism makes no tension change because of twisting or friction between the tendon and the system, that is, the operating performance was the same regardless of rotation. CONCLUSION: The proposed mechanism has been verified and can be applied to small surgical instruments 3 mm in size. These findings can be applied in the development of instruments for precise surgeries such as microsurgery.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Rotação , Instrumentos Cirúrgicos , Tendões/cirurgia
4.
Int J Med Robot ; 17(3): e2240, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33599377

RESUMO

BACKGROUND: Intraocular surgery and reconstructive surgery are challenging microsurgery procedures that require two types of motion: precise motion and larger motion. To effectively perform the requisite motion using a robot, it is necessary to develop a manipulator that can adjust the scale of motion between precise motion and less precise, yet larger motion. AIMS: In this paper, we propose a novel microsurgery robot using the dual delta structure (DDS) to mechanically scale the motion to seamlessly adjust between precise and larger motion. MATERIALS & METHODS: The DDS forms a lever mechanism that enables the motion scaling at the end-effector using two delta platforms. Seamless scale adjustment enables the robot to effectively perform various surgical moves. RESULTS: A prototype robot system was developed to validate the effectiveness of the DDS. The experiment results in various scale settings validated the scaling mechanism of the DDS. CONCLUSION: Through a graphical simulation and measurement experiment, the robot's precision level and attainable workspace has been confirmed adequate for intraocular and reconstructive surgery.


Assuntos
Procedimentos de Cirurgia Plástica , Procedimentos Cirúrgicos Robóticos , Simulação por Computador , Humanos , Microcirurgia , Movimento (Física) , Robótica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA