Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hepatol Int ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138757

RESUMO

BACKGROUND & AIMS: Despite increasing knowledge regarding the cellular and molecular mechanisms of liver fibrogenesis, there is currently no approved drug for the treatment of liver fibrosis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for tissue damage and inflammation. This study was designed to determine the protective effect and underlying mechanism of human umbilical cord-derived MSCs (UC-MSCs) on thioacetamide-induced liver fibrosis. METHODS: Liver fibrosis was induced in mice by intraperitoneal injection of thioacetamide (TAA). Some mice were then given injection of UC-MSCs or UC-MSCs-derived exosomes (UC-MSCs-Exo) via the tail vein. Liver tissues were collected for histologic analysis. RESULTS: We found that administration of UC-MSCs significantly reduced serum alanine aminotransferase and aspartate aminotransferase levels, and attenuated hepatic inflammation and fibrosis. Moreover, the therapeutic effect of UC-MSCs-derived exosomes was similar to that of UC-MSCs. Intriguingly, UC-MSCs-Exo treatment downregulated the expression of smoothened (SMO), a fundamental component of Hedgehog signaling which plays a critical role in fibrogenesis, and subsequently inhibited the activation of hepatic stellate cells, a central driver of fibrosis in experimental and human liver injury. Furthermore, the anti-inflammatory and anti-fibrotic effects of UCMSCs- Exo was reversed by the SMO agonist SAG treatment in mice. CONCLUSION: Our findings suggest that UC-MSCs-Exo exert therapeutic effects on liver fibrosis, at least in part, through inhibiting the Hedgehog/SMO signaling pathway.

2.
Stem Cell Res Ther ; 13(1): 318, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842731

RESUMO

BACKGROUND: Notch signaling plays important roles in regulating innate immunity. However, little is known about the role of Notch in mesenchymal stromal/stem cell (MSC)-mediated immunomodulation during liver inflammatory response. METHODS: Notch activation in human umbilical cord-derived MSCs was performed by a tissue culture plate coated with Notch ligand, recombinant human Jagged1 (JAG1). Mice were given intravenous injection of Notch-activated MSCs after acetaminophen (APAP)-induced acute liver injury. Liver tissues were collected and analyzed by histology and immunohistochemistry. RESULTS: MSC administration reduced APAP-induced hepatocellular damage, as manifested by decreased serum ALT levels, intrahepatic macrophage/neutrophil infiltration, hepatocellular apoptosis and proinflammatory mediators. The anti-inflammatory activity and therapeutic effects of MSCs were greatly enhanced by Notch activation via its ligand JAG1. However, Notch2 disruption in MSCs markedly diminished the protective effect of MSCs against APAP-induced acute liver injury, even in the presence of JAG1 pretreatment. Strikingly, Notch-activated MSCs promoted AMP-activated protein kinase (AMPKα) phosphorylation, increased the sirtuins 1 (SIRT1) deacetylase expression, but downregulated spliced X-box-binding protein 1 (XBP1s) expression and consequently reduced NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation. Furthermore, SIRT1 disruption or XBP1s overexpression in macrophages exacerbated APAP-triggered liver inflammation and augmented NLRP3/caspase-1 activity in MSC-administrated mice. Mechanistic studies further demonstrated that JAG1-pretreated MSCs activated Notch2/COX2/PGE2 signaling, which in turn induced macrophage AMPK/SIRT1 activation, leading to XBP1s deacetylation and inhibition of NLRP3 activity. CONCLUSIONS: Activation of Notch2 is required for the ability of MSCs to reduce the severity of APAP-induced liver damage in mice. Our findings underscore a novel molecular insights into MSCs-mediated immunomodulation by activating Notch2/COX2/AMPK/SIRT1 pathway and thus provide a new strategy for the treatment of liver inflammatory diseases.


Assuntos
Acetaminofen , Células-Tronco Mesenquimais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acetaminofen/toxicidade , Animais , Ciclo-Oxigenase 2 , Humanos , Ligantes , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA