Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(19): 14418-14427, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39265979

RESUMO

Due to their important potential medicinal value, chemists are pursuing mild and efficient methods to synthesize structurally diverse quinazolinone derivatives. In this paper, a series of isocyano-tethered N-aryl quinazolinones were designed and synthesized to conduct electrocatalytic radical cascade cyclization reactions with phosphine oxides by utilizing inexpensive MnII salt as the catalyst. The desired 6-phosphorylated quinoxalino[2,1-b]quinazolin-12-ones were obtained in moderate to good yields.

2.
Mar Life Sci Technol ; 6(2): 266-279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827132

RESUMO

The eye, as a specialized visual organ, is directly exposed to the external environment, and, therefore, it faces constant challenges from external pathogenic organisms and toxins. In the ocular mucosa (OM) of mammals, mucosal-associated lymphoid tissues (MALTs) constitute the primary line of defense. However, the immune defense role of the OM remains unknown in aquatic vertebrates. To gain insights into the immune processes within the OM of teleost fish, we developed an infection model of rainbow trout (Oncorhynchus mykiss) OM using a parasite, Ichthyophthirius multifiliis (Ich). Immunofluorescence, qPCR, and H&E staining revealed that Ich successfully infiltrates the OM of rainbow trout, leading to pathological structural changes, as evidenced by A&B staining. Importantly, the qPCR results indicate an up-regulation of immune-related genes following Ich infection in the OM. Moreover, transcriptome analyses were conducted to detect immune responses and impairments in eye function within the OM of rainbow trout with Ich infection. The results of the transcriptome analysis that Ich infection can cause an extensive immune response in the OM, ultimately affecting ocular function. To the best of our knowledge, our findings represent for the first time that the teleost OM could act as an invasion site for parasites and trigger a strong mucosal immune response to parasitic infection. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00199-6.

3.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636737

RESUMO

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Transdução de Sinais , Ubiquitinação , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Rhabdoviridae/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Imunidade Inata/genética , Ubiquitina Tiolesterase/genética , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
4.
Dev Comp Immunol ; 156: 105170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522716

RESUMO

Ubiquitin-specific peptidase 46 (USP46) functions as a deubiquitinating enzyme, facilitating the removal of ubiquitin molecules attached to substrate proteins and playing a critical role in cancer and neurodegenerative diseases. However, its function in innate antiviral immunity is unknown. In this study we cloned and identified bcUSP46, a homolog of USP46 from black carp. We discovered that overexpression of bcUSP46 enhanced the transcription of interferon (IFN) promoters and increased the expression of IFN, PKR, and Mx1. In addition, bcUSP46 knockdown significantly inhibited the expression of ISG genes, as well as the antiviral activity of the host cells. Interestingly, when bcUSP46 was co-expressed with the RLR factors, it significantly enhanced the activity of the IFN promoter mediated by these factors, especially TANK-binding kinase 1 (TBK1). The subsequent co-immunoprecipitation (co-IP) and immunofluorescence (IF) assay confirmed the association between bcUSP46 and bcTBK1. Noteworthily, co-expression of bcUSP46 with bcTBK1 led to an elevation of bcTBK1 protein level. Further analysis revealed that bcUSP46 stabilized bcTBK1 by eliminating the K48-linked ubiquitination of bcTBK1. Overall, our findings highlight the unique role of USP46 in modulating TBK1/IFN signaling and enrich our knowledge of the function of deubiquitination in regulating innate immunity in vertebrates.


Assuntos
Carpas , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Ubiquitinação , Carpas/imunologia , Animais , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Interferons/metabolismo , Interferons/genética , Humanos , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética
5.
Fish Shellfish Immunol ; 148: 109510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521143

RESUMO

The signal transducer and activator of transcription 2 (STAT2), a downstream factor of type I interferons (IFNs), is a key component of the cellular antiviral immunity response. However, the role of STAT2 in the upstream of IFN signaling, such as the regulation of pattern recognition receptors (PRRs), remains unknown. In this study, STAT2 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The open reading frame (ORF) of bcSTAT2 comprises 2523 nucleotides and encodes 841 amino acids, which presents the conserved structure to that of mammalian STAT2. The dual-luciferase reporter assay and the plaque assay showed that bcSTAT2 possessed certain IFN-inducing ability and antiviral ability against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Interestingly, we detected the association between bcSTAT2 and bcRIG-I through co-immunoprecipitation (co-IP) assay. Moreover, when bcSTAT2 was co-expressed with bcRIG-I, bcSTAT2 obviously suppressed bcRIG-I-induced IFN expression and antiviral activity. The subsequent co-IP assay and immunoblotting (IB) assay further demonstrated that bcSTAT2 inhibited K63-linked polyubiquitination but not K48-linked polyubiquitination of bcRIG-I, however, did not affect the oligomerization of bcRIG-I. Thus, our data conclude that black carp STAT2 negatively regulates RIG-I through attenuates its K63-linked ubiquitination, which sheds a new light on the regulation of the antiviral innate immunity cascade in vertebrates.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Infecções por Rhabdoviridae , Animais , Carpas/genética , Carpas/metabolismo , Infecções por Rhabdoviridae/veterinária , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Reoviridae/fisiologia , Imunidade Inata/genética , Proteínas de Peixes , Mamíferos/metabolismo
6.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460951

RESUMO

Snakehead vesiculovirus (SHVV) is one of the primary pathogens responsible for viral diseases in the snakehead fish. A TaqMan-based real-time PCR assay was established for the rapid detection and quantification of SHVV in this study. Specific primers and fluorescent probes were designed for phosphoprotein (P) gene, and after optimizing the reaction conditions, the results indicated that the detection limit of this method could reach 37.1 copies, representing a 100-fold increase in detection sensitivity compared to RT-PCR. The specificity testing results revealed that this method exhibited no cross-reactivity with ISKNV, LMBV, RSIV, RGNNV, GCRV, and CyHV-2. Repetition experiments demonstrated that both intra-batch and inter-batch coefficients of variation were not higher than 1.66%. Through in vitro infection experiments monitoring the quantitative changes of SHVV in different tissues, the results indicated that the liver and spleen exhibited the highest viral load at 3 poi. The TaqMan-based real-time PCR method established in this study exhibits high sensitivity, excellent specificity, and strong reproducibility. It can be employed for rapid detection and viral load monitoring of SHVV, thus providing a robust tool for the clinical diagnosis and pathogen research of SHVV.


Assuntos
Doenças dos Peixes , Iridoviridae , Perciformes , Infecções por Rhabdoviridae , Animais , Perciformes/genética , Vesiculovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Peixes/diagnóstico , Reprodutibilidade dos Testes , Iridoviridae/genética , Sensibilidade e Especificidade
7.
Fish Shellfish Immunol ; 146: 109426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316349

RESUMO

Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Triploidia , Transdução de Sinais , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Imunidade Inata/genética , Poli I-C/farmacologia , Antivirais
9.
Microbiome ; 12(1): 10, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218870

RESUMO

BACKGROUND: The visual organ plays a crucial role in sensing environmental information. However, its mucosal surfaces are constantly exposed to selective pressures from aquatic or airborne pathogens and microbial communities. Although few studies have characterized the conjunctival-associated lymphoid tissue (CALT) in the ocular mucosa (OM) of birds and mammals, little is known regarding the evolutionary origins and functions of immune defense and microbiota homeostasis of the OM in the early vertebrates. RESULTS: Our study characterized the structure of the OM microbial ecosystem in rainbow trout (Oncorhynchus mykiss) and confirmed for the first time the presence of a diffuse mucosal-associated lymphoid tissue (MALT) in fish OM. Moreover, the microbial communities residing on the ocular mucosal surface contribute to shaping its immune environment. Interestingly, following IHNV infection, we observed robust immune responses, significant tissue damage, and microbial dysbiosis in the trout OM, particularly in the fornix conjunctiva (FC), which is characterized by the increase of pathobionts and a reduction of beneficial taxa in the relative abundance in OM. Critically, we identified a significant correlation between viral-induced immune responses and microbiome homeostasis in the OM, underscoring its key role in mucosal immunity and microbiota homeostasis. CONCLUSIONS: Our findings suggest that immune defense and microbiota homeostasis in OM occurred concurrently in early vertebrate species, shedding light on the coevolution between microbiota and mucosal immunity. Video Abstract.


Assuntos
Imunidade nas Mucosas , Microbiota , Animais , Mucosa , Microbiota/genética , Peixes , Homeostase , Mamíferos
10.
Fish Shellfish Immunol ; 145: 109326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134976

RESUMO

Immunoglobulin M (IgM) specifically recognizes various antigens and can activate complement, mediate cytotoxicity, opsonize and agglutinate pathogens to induce phagocytosis, all of which play an important role in immunity. However, the IgM response of common carp (Cyprinus carpio) in the intestinal mucosa after viral infection has not been thoroughly. Therefore, we successfully produced an anti-carp IgM monoclonal antibody and developed a model of viral infection to study the kinetics of immune responses after viral infection. Our results showed that the expression of IL1-ß and Igs were dramatically increased, implying that common carp exhibited a significant innate and adaptive immune response to viral infection. Furthermore, we found that the IgM responses varied between the two infection strategies. At 14 days post-infection (DPI), a significant population of IgM+ B cells were observed in the gut, accompanied by a sharp rise in IgM levels. The immune response to secondary infection started at 7 DPI, suggesting that the IgM response is faster in the gut after re-infection. Importantly, we also explored the variability of different gut compartments to viral infection, and result revealed a stronger immune response in the hindgut than in the foregut and midgut. Overall, our findings indicate that IgM plays an important role in the intestinal immune response following primary and secondary viral infection, in which the hindgut plays a major immune function.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Imunoglobulina M , Viremia , Imunidade nas Mucosas
11.
Front Immunol ; 14: 1288223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077363

RESUMO

The eye of vertebrates is constantly faced with numerous challenges from aquatic or airborne pathogens. As a crucial first line of defense, the ocular mucosa (OM) protects the visual organ from external threats in vertebrates such as birds and mammals. However, the understanding of ocular mucosal immunity in early vertebrates, such as teleost fish, remains limited, particularly concerning their resistance to bacterial infections. To gain insights into the pivotal role of the OM in antibacterial immunity among teleost fish, we developed a bacterial infection model using Flavobacterium columnare in rainbow trout (Oncorhynchus mykiss). Here the qPCR and immunofluorescence results showed that F. columnare could invade trout OM, suggesting that the OM could be a primary target and barrier for the bacteria. Moreover, immune-related genes (il-6, il-8, il-11, cxcl10, nod1, il1-b, igm, igt, etc.) were upregulated in the OM of trout following F. columnare infection, as confirmed by qPCR, which was further proved through RNA-seq. The results of transcriptome analyses showed that bacterial infection critically triggers a robust immune response, including innate, and adaptive immune-related signaling pathways such as Toll-like, NOD-like, and C-type lectin receptor signaling pathway and immune network for IgA production, which underscores the immune role of the OM in bacterial infection. Interestingly, a substantial reduction in the expression of genes associated with visual function was observed after infection, indicating that bacterial infection could impact ocular function. Overall, our findings have unveiled a robust mucosal immune response to bacterial infection in the teleost OM for the first time, providing valuable insights for future research into the mechanisms and functions of ocular mucosal immunity in early vertebrate species.


Assuntos
Infecções Bacterianas , Oncorhynchus mykiss , Animais , Mucosa , Imunidade , Mamíferos
12.
Animals (Basel) ; 13(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067021

RESUMO

The suitable dietary L-lysine concentration for coho salmon (Oncorhynchus kisutch) alevins was assessed by a dose response feeding trial. Six experimental diets were made with graded L-lysine concentrations of 2.29%, 2.81%, 3.32%, 3.80%, 4.27%, and 4.78% of the dry matter, respectively, each of which was fed to triplicate groups of 100 alevins (initial body weight: 0.30 ± 0.01 g) in 18 plastic baskets (water volume 240 L). The alevins were cultured in a flowing freshwater system and fed manually to apparent satiation four times a day for 12 weeks. The survival rate of alevins did not differ significantly among the dietary groups. The specific growth rate (SGR), protein efficiency ratio (PER), and body protein deposition (BPD) increased significantly (p < 0.05) with the increase in dietary lysine concentration up to 3.80% and then reduced as lysine level further increased. The feed conversion ratio (FCR) had an inverse trend to SGR. The whole-body crude protein content of the alevins increased significantly with increasing dietary lysine level, while crude lipid content showed the opposite trend. In comparison, the contents of morphological indices, whole-body moisture, and ash were not affected significantly (p > 0.05) by the different dietary lysine concentrations. The highest contents of lysine, arginine, and total essential amino acids (EAAs) were observed in the group with 4.27% dietary lysine concentration, which did not differ significantly from those in the 3.32%, 3.80%, and 4.78% groups but was significantly higher than those in the 2.29% and 2.81% groups. Similarly, valine had the highest content in the group with 4.78%. The variations in dietary lysine had no significant impacts on other EAA and non-EAA contents except glycine, which increased with increasing dietary lysine level. Second-order polynomial model analyses based on SGR, PER, BPD, and FCR evaluated the optimum L-lysine requirements of coho salmon alevins as 3.74%, 3.73%, 3.91%, and 3.77% of the diet or 6.80%, 6.78%, 7.11%, and 6.85% of dietary proteins, respectively.

13.
Fish Shellfish Immunol ; 143: 109224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956797

RESUMO

Citrobacter freundii, a common pathogen of freshwater fish, causes significant commercial losses to the global fish farming industry. In the present study, a highly pathogenic C. freundii strain was isolated and identified from largemouth bass (Micropterus salmoides). The pathogenicity and antibiotic sensitivity of the C. freundii strain were evaluated, and the histopathology and host immune response of largemouth bass infected with C. freundii were investigated. The results showed that C. freundii was the pathogen causing disease outbreaks in largemouth bass, and the infected fish showed typical signs of acute hemorrhages and visceral enlargement. Antimicrobial susceptibility testing showed that the C. freundii strain was resistant to Kanamycin, Medimycin, Clindamycin, Penicillin, Oxacillin, Ampicillin, Cephalexin, Cefazolin, Cefradine and Vancomycin. Histopathological analysis showed different pathological changes in major tissues of diseased fish. In addition, humoral immune factors such as superoxide dismutase (SOD), catalase (CAT) and lysozyme (LZM) were used as serum indicators to evaluate the immune response of largemouth bass after infection. Quantitative real-time PCR (qRT-PCR) was performed to investigate the expression pattern of immune-related genes (CXCR1, IL-8, IRF7, IgM, CD40, IFN-γ, IL-1ß, Hep1, and Hep2) in liver, spleen, and head kidney tissues, which demonstrated a strong immune response induced by C. freundii infection in largemouth bass. The present study provides insights into the pathogenic mechanism of C. freundii and immune response in largemouth bass, promoting the prevention and treatment of diseases caused by C. freundii infection.


Assuntos
Bass , Doenças dos Peixes , Animais , Citrobacter freundii , Imunidade
14.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958486

RESUMO

Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Orthoreovirus , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Transcriptoma , Virulência , Reoviridae/fisiologia , Infecções por Reoviridae/genética , Infecções por Reoviridae/veterinária
15.
Fish Shellfish Immunol ; 142: 109166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37844853

RESUMO

Respiratory structures are crucial for vertebrate survival, as they serve not only to perform gas-exchange processes but also as entry points for opportunistic pathogens. Previous studies have demonstrated that fish contain gill mucosal-associated lymphoid tissue, and harbor a large number of commensal bacteria on their surface and contribute to maintaining fish health. However, by far, very limited information is known regarding the effects of viral infection on gill mucosal immunity and microbiota homeostasis. In this study, we conducted an infection model by bath with infectious hematopoietic necrosis virus (IHNV) and revealed a 27 % mortality rate among rainbow trout in the first two weeks after infection. Moreover, we found that diseased fish with the highest IHNV loads in gills exhibiting severe damage, as well as increased goblet cell counts in both primary lamellae (PL) and secondary lamellae (SL). Additionally, RT-qPCR and RNA-seq analyses revealed that IHNV infection induced a strong innate and adaptive antiviral immune responses. Interestingly, an antibacterial immune response was also observed, suggesting that a secondary bacterial infection occurred in trout gills after viral infection. Furthermore, 16S rRNA analysis of trout gills revealed a profound dysbiosis marked by a loss of beneficial taxa and expansion of pathobionts following IHNV infection. Overall, our finding demonstrates that IHNV infection induces significant changes of the microbial community in the fish respiratory surface, thus triggering local antiviral and bacterial mucosal immunity.


Assuntos
Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Microbiota , Oncorhynchus mykiss , Infecções por Rhabdoviridae , Animais , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Brânquias , Imunidade nas Mucosas , RNA Ribossômico 16S
16.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689228

RESUMO

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Assuntos
Doenças dos Peixes , Ictaluridae , Ictalurivirus , Animais , Imunidade , Inflamação , Antivirais
17.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762047

RESUMO

Granulocytes are crucial innate immune cells that have been extensively studied in teleost fish. Studies in mammals have revealed that mechanistic target of rapamycin complex 1 (mTORC1) signaling acts as a significant immune regulatory hub, influencing granulocyte immune function. To investigate whether mTORC1 signaling also regulates the immune function of granulocytes in teleost fish, we established a model of RAPA inhibition of the mTORC1 signaling pathway using granulocytes from largemouth bass (Micropterus salmoides). Our results demonstrated that inhibition of mTORC1 signaling promoted autophagy and apoptosis of granulocytes while inhibiting cell proliferation. Moreover, inhibition of the mTORC1 signaling pathway enhanced the phagocytosis capacity of granulocytes. Collectively, our findings revealed the evolutionarily conserved role of the mTORC1 signaling pathway in regulating granulocyte responses, thus providing novel insights into the function of granulocytes in teleost fish.

18.
J Colloid Interface Sci ; 649: 1031-1038, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37402348

RESUMO

The p-i heterojunction imbedded underneath the perovskite layer plays a vital role in determining the efficiency and stability of inverted perovskite solar cells (PSCs). We found that poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA) suffers from the severely chain entanglement resulting in poor contact with perovskite. In this work, PTAA layer was treated by poly[(2,6-(4,8-bis(5-(2-ethylhexylthio)-4-fluorothiophen-2-yl)-benzo[1,2-b:4,5-b'] dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl) benzo[1',2'-c:4',5'-c'] dithiophene-4,8-dione)] (PBDB-T-SF) diluted solution in chlorobenzene. PBDB-T-SF, which contains dual carbonyl groups in its backbones and suitable electronic levels, can spontaneously fill the voids in chlorobenzene-washed PTAA (nano-PTAA). This not only promotes the work function of the substrate but also strengthens the coherence between perovskite and the substrate. Blade coated PSC (0.09 cm2) containing PBDB-T-SF (s-PSCs) realized a power conversion efficiency (PCE) of 21.83 %. After aging for more than 2000 h, s-PSCs maintains 88 % of the initial efficiency which is only 59 % for the control devices.

19.
Polymers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177138

RESUMO

Micellar-nanocarrier-based drug delivery systems possessing characteristics such as an excellent circulation stability, inhibited premature release and on-demand site-specific release are urgently needed for enhanced therapeutic efficacy. Therefore, a novel kind of shell-sheddable core-crosslinked polymeric micelles with pH and oxidation dual-triggered on-demand drug release behavior was facilely constructed. The multifunctional micelles were self-assembled from a carefully designed amphiphilic triblock PEGylated polyurethane (PEG-acetal-PUBr-acetal-PEG) employing an acid-labile acetal linker at the hydrophilic-hydrophobic interface and pendant reactive bromo-containing polyurethane (PU) as the hydrophobic block, followed by a post-crosslinking via oxidation-cleavable diselenide linkages. These well-defined micelles exhibited an enhanced structural stability against dilution, achieved through the incorporation of diselenide crosslinkers. As expected, they were found to possess dual pH- and oxidation-responsive dissociation behaviors when exposure to acid pH (~5.0) and 50 mM H2O2 conditions, as evidenced using dynamic light-scattering (DLS) and atomic force microscopy (AFM) analyses. An in vitro drug release investigation showed that the drug indomethacin (IND) could be efficiently encapsulated in the micelles, which demonstrated an inhibited premature release compared to the non-crosslinked ones. It is noteworthy that the resulting micelles could efficiently release entrapped drugs at a fast rate in response to either pH or oxidation stimuli. Moreover, the release could be significantly accelerated in the presence of both acid pH and oxidation conditions, relative to a single stimulus, owing to the synergetic degradation of micelles through pH-induced dePEGylation and oxidation-triggered decrosslinking processes. The proposed shell-sheddable core-crosslinked micelles with a pH and oxidation dual-response could be potential candidates as drug carriers for on-demand drug delivery.

20.
Org Biomol Chem ; 21(8): 1662-1666, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36734361

RESUMO

As an efficient and green synthesis method, the electrocatalysis hydrogen evolution coupling reaction has been widely used by chemists to realize the combining of two nucleophiles. In this work, an alternative method to synthesize 6-phosphorylated phenanthridines has been developed by synergistically utilizing electrocatalysis and Mn catalysis, with moderate to relatively good yields achieved. Mild and oxidant-free conditions make this synthetic method applicable in various settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA