Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(31): 35734-35744, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913208

RESUMO

Important efforts are currently under way in order to develop further the nascent field of plasmonic photocatalysis, striving for improved efficiencies and selectivities. A significant fraction of such efforts has been focused on distinguishing, understanding, and enhancing specific energy-transfer mechanisms from plasmonic nanostructures to their environment. Herein, we report a synthetic strategy that combines two of the main physical mechanisms driving plasmonic photocatalysis into an engineered system by rationally combining the photochemical features of energetic charge carriers and the electromagnetic field enhancement inherent to the plasmonic excitation. We do so by creating hybrid photocatalysts that integrate multiple plasmonic resonators in a single entity, controlling their joint contribution through spectral separation and differential surface functionalization. This strategy allows us to create complex hybrids with improved photosensitization capabilities, thanks to the synergistic combination of two photosensitization mechanisms. Our results show that the hot electron injection can be combined with an energy-transfer process mediated by the near-field interaction, leading to a significant increase in the final photocatalytic response of the material and moving the field of plasmonic photocatalysis closer to energy-efficient applications. Furthermore, our multimodal hybrids offer a test system to probe the properties of the two targeted mechanisms in energy-related applications such as the photocatalytic generation of hydrogen and open the door to wavelength-selective photocatalysis and novel tandem reactions.

2.
ACS Nano ; 15(10): 16357-16367, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34546029

RESUMO

Plasmonic metasurfaces with the photothermal effect have been increasingly investigated for optofluidics. Meanwhile, along with the expanding application of circularly polarized light, a growing number of investigations on chiral plasmonic metasurfaces have been conducted. However, few studies have explored the chirality and the thermal-induced convection of such systems simultaneously. This paper aims to theoretically investigate the dynamics of the thermally induced fluid convection of a chiral plasmonic metasurface. The proposed metasurface exhibits giant circular dichroism in absorption and thus leads to a strong photothermal effect. On the basis of the multiphysical analysis, including optics, thermodynamics, and hydrodynamics, we propose a concept of chiral spectroscopy termed optofluidic circular dichroism. Our results show that different fluid velocities of thermally induced convection appear around a chiral plasmonic metasurface under different circularly polarized excitation. The chiral fluid convection is induced by an asymmetric heat distribution generated by absorbed photons in the plasmonic heater. This concept can be potentially used to induce chiral fluid convection utilizing the chiral photothermal effect. Our proposed structure can potentially be used in various optofluidics applications related to biochemistry, clinical biology, and so on.

3.
Nanoscale ; 12(6): 3827-3833, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-31995089

RESUMO

There is significant interest in the utility of asymmetric nanoaperture arrays as substrates for the surface-enhanced detection, fluorescence, and imaging of individual molecules. This work introduces obliquely-cut, out-of-plane, coaxial layered structures on an aperture edge. We refer to these structures as nanofingernails, which emphasizes their curved, oblique, and out-of-plane features. Broadband coupling into chiral hybrid plasmon modes and helicity-dependent near-field scattering without circular dichroism are demonstrated. The unusually-broadband, multipolar modes of nanofingernail micropore structures exhibit phase retardation effects that may be useful for achieving spatial overlap at different frequencies. The nanofingernail geometry shows new potential for simultaneous polarization-enhanced hyperspectral imaging on apertured, plasmonic surfaces.

4.
Proc Natl Acad Sci U S A ; 117(5): 2288-2293, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964821

RESUMO

Limited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm-1 for 2.5-3.9-µm-long NWs reveal a series of resonances due to the Fabry-Pérot modes of the NWs. Crucially, IR-PHI images show structure that reflects the spatial distribution of the NW absorption, and allow the resonances to be assigned to the m = 3 and m = 4 Fabry-Pérot modes. This far-field optical measurement has been used to image the mode structure of plasmon resonances in metal nanostructures, and is made possible by the superresolution capabilities of IR-PHI. The linewidths in the NW spectra range from 35 to 75 meV and, in several cases, are significantly below the limiting values predicted by the bulk Au Drude damping parameter. These linewidths imply long dephasing times, and are attributed to reduction in both radiation damping and resistive heating effects in the NWs. Compared to previous imaging studies of NW Fabry-Pérot modes using electron microscopy or near-field optical scanning techniques, IR-PHI experiments are performed under ambient conditions, enabling detailed studies of how the environment affects mid-IR plasmons.

5.
Adv Mater ; 32(41): e1801790, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30260543

RESUMO

Nature is chiral, thus chirality is a key concept required to understand a multitude of systems in physics, chemistry, and biology. The field of optics offers valuable tools to probe the chirality of nanosystems, including the measurement of circular dichroism, the differential interaction strength between matter and circularly polarized light with opposite helicity. Simultaneously, the use of plasmonic systems with giant light-interaction cross-sections opens new paths to investigate and manipulate systems on the nanoscale. Consequently, the interest in chiral plasmonic and hybrid systems has continually grown in recent years, due to their potential applications in biosensing, polarization-encoded optical communication, polarization-selective chemical reactions, and materials with polarization-dependent light-matter interaction. Experimentally, chiral properties of nanostructures can be either created artificially using modern fabrication techniques involving inorganic materials, or borrowed from nature using bioassembly or biomolecular templating. Herein, the recent progress in the field of plasmonic chirality is summarized, with a focus on both the theoretical background and the experimental advances in the study of chirality in various systems, including molecular-plasmonic assemblies, chiral plasmonic nanostructures, chiral assemblies of interacting plasmonic nanoparticles, and chiral metal metasurfaces and metamaterials. The growth prospects of this field are also discussed.

6.
ACS Nano ; 13(8): 9655-9663, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31361953

RESUMO

The ability to control and manipulate temperature at nanoscale dimensions has the potential to impact applications including heat-assisted magnetic recording, photothermal therapies, and temperature-driven reactivity. One challenge with controlling temperature at nanometer dimensions is the need to mitigate heat diffusion, such that the temperature only changes in well-defined nanoscopic regions of the sample. Here we demonstrate the ability to use far-field laser excitation to actively shape the thermal near-field in individual gold nanorod heterodimers by resonantly pumping either the in-phase or out-of-phase hybridized dipole plasmon modes. Using single-particle photothermal heterodyne imaging, we demonstrate localization bias in the photothermal intensity due to preferential heating of one of the nanorods within the pair. Theoretical modeling and numerical simulation make explicit how the resulting photothermal images encode wavelength-dependent temperature biases between each nanorod within a heterodimer, demonstrating the ability to actively manage the thermal near-field by simply tuning the color of incident light.

7.
Annu Rev Phys Chem ; 70: 275-299, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31112458

RESUMO

We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Estereoisomerismo , Ressonância de Plasmônio de Superfície
8.
Adv Sci (Weinh) ; 5(8): 1800656, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30128262

RESUMO

Colloidal heterostructured quantum dots (QDs) are promising candidates for next-generation optoelectronic devices. In particular, "giant" core/shell QDs (g-QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high-performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe x S2-x (CISeS)/CdSeS/CdS g-QDs with pyramidal shape by using a facile two-step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as-obtained heterostructured g-QDs exhibit near-infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g-QDs exhibit a quasi-type II band structure with spatial separation of electron-hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g-QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm-2 and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm-2). These results are an important step toward using heterostructured pyramidal g-QDs for prospective applications in solar technologies.

9.
ACS Nano ; 12(7): 7117-7126, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29945441

RESUMO

For semiconductors photosensitized with organic dyes or quantum dots, transferred electrons are usually considered thermalized at the conduction band edge. This study suggests that the electrons injected from a plasmonic metal into a thin semiconductor shell can be nonthermal with energy up to the plasmon frequency. In other words, the electrons injected into the semiconductor are still hot carriers. Photomodulated X-ray absorption measurements of the Ti L2,3 edge are compared before and after excitation of the plasmon in Au@TiO2 core-shell nanoparticles. Comparison with theoretical predictions of the X-ray absorption, which include the heating and state-filling effects from injected hot carriers, suggests that the electrons transferred from the plasmon remain nonthermal in the ∼10 nm TiO2 shell, due in part to a slow trapping in defect states. By repeating the measurements for spherical, rod-like, and star-like metal nanoparticles, the magnitude of the nonthermal distribution, peak energy, and number of injected hot electrons are confirmed to be tuned by the plasmon frequency and the sharp corners of the plasmonic nanostructure. The results suggest that plasmonic photosensitizers can not only extend the sunlight absorption spectral range of semiconductor-based devices but could also result in increased open circuit voltages and elevated thermodynamic driving forces for solar fuel generation in photoelectrochemical cells.

10.
Nano Lett ; 18(5): 3147-3156, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29620909

RESUMO

The need for energy-saving materials is pressing. This Letter reports on the design of energy-saving glasses and films based on plasmonic nanocrystals that efficiently block infrared radiation. Designing such plasmonic composite glasses is nontrivial and requires taking full advantage of both material and geometrical properties of the nanoparticles. We compute the performance of solar plasmonic glasses incorporating a transparent matrix and specially shaped nanocrystals. This performance depends on the shape and material of such nanocrystals. Glasses designed with plasmonic nanoshells are shown to exhibit overall better performances as compared to nanorods and nanocups. Simultaneously, scalable synthesis of plasmonic nanoshells and nanocups is technologically feasible using gas-phase fabrication methods. The computational simulations were performed for noble metals (gold and silver) as well as for alternative plasmonic materials (aluminum, copper, and titanium nitride). Inexpensive plasmonic materials (silver, copper, aluminum, and titanium nitride) show an overall good performance in terms of the commonly used figures of merit of industrial glass windows. Together with numerical data for specific materials, this study includes a set of general rules for designing efficient plasmonic IR-blocking media. The plasmonic glasses proposed herein are good candidates for the creation of cheap optical media, to be used in energy-saving windows in warm climates' housing or temperature-sensitive infrastructure.

11.
Nano Lett ; 18(3): 2001-2008, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29420903

RESUMO

Chiral photochemistry remains a challenge because of the very small asymmetry in the chiro-optical absorption of molecular species. However, we think that the rapidly developing fields of plasmonic chirality and plasmon-induced circular dichroism demonstrate very strong chiro-optical effects and have the potential to facilitate the development of chiral photochemistry and other related applications such as chiral separation and sensing. In this study, we propose a new type of chiral spectroscopy-photothermal circular dichroism. It is already known that the planar plasmonic superabsorbers can be designed to exhibit giant circular dichroism signals in the reflection. Therefore, upon illumination with chiral light, such planar metastructures should be able to generate a prominent asymmetry in their local temperatures. Indeed, we demonstrate this chiral photothermal effect using a chiral plasmonic absorber. Calculated temperature maps show very strong photothermal circular dichroism. One of the structures computed in this Letter could serve as a chiral bolometer sensitive to circularly polarized light. Overall, this chiro-optical effect in plasmonic metamaterials is much greater than the equivalent effect in any chiral molecular system or plasmonic bioassembly. Potential applications of this effect are in polarization-sensitive surface photochemistry and chiral bolometers.

12.
Nat Commun ; 8(1): 2135, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233993

RESUMO

The originally published version of this Article contained an error in Equation 1. The two ℏ terms were missing from this equation. This has now been corrected in the PDF and HTML versions of the Article.

13.
Nat Commun ; 8(1): 986, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042536

RESUMO

The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.

14.
Nano Lett ; 17(8): 5099-5105, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28715228

RESUMO

It is very interesting to bring plasmonic circular dichroism spectroscopy to the mid-infrared spectral interval, and there are two reasons for this. This spectral interval is very important for thermal bioimaging, and simultaneously, this spectral range includes vibrational lines of many chiral biomolecules. Here we demonstrate that graphene plasmons indeed offer such opportunity. In particular, we show that chiral graphene assemblies consisting of a few graphene nanodisks can generate strong circular dichroism (CD) in the mid-infrared interval. The CD signal is generated due to the plasmon-plasmon coupling between adjacent nanodisks in the specially designed chiral graphene assemblies. Because of the large dimension mismatch between the thickness of a graphene layer and the incoming light's wavelength, three-dimensional configurations with a total height of a few hundred nanometers are necessary to obtain a strong CD signal in the mid-infrared range. The mid-infrared CD strength is mainly governed by the total dimensions (total height and helix scaffold radius) of the graphene nanodisk assembly and by the plasmon-plasmon interaction strength between its constitutive nanodisks. Both positive and negative CD bands can be observed in the graphene assembly array. The frequency interval of the plasmonic CD spectra overlaps with the vibrational modes of some important biomolecules, such as DNA and many different peptides, giving rise to the possibility of enhancing the vibrational optical activity of these molecular species by attaching them to the graphene assemblies. Simultaneously the spectral range of chiral mid-infrared plasmons in our structures appears near the typical wavelength of the human-body thermal radiation, and therefore, our chiral metastructures can be potentially utilized as optical components in thermal imaging devices.

15.
Opt Express ; 23(19): 24177-88, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406624

RESUMO

The polarization dependence of transient optical reflection, induced by nonequilibrium carriers isotropically distributed in momentum space, of graphene on substrate is experimentally and theoretically investigated. It is found that this transient optical reflection could be made greatly polarization dependent by using oblique incidence for light, and the characteristic of this polarization dependence could be flexibly altered with incident angle and incident direction (from graphene to substrate, or from substrate to graphene). Our results suggest that through polarization of incident beam is an efficient way of manipulating graphene transient optical reflection.

16.
Opt Lett ; 40(1): 1-4, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25531593

RESUMO

The scheme of graphene on a silicon substrate is potentially compatible to the microelectronic technology. But the maintained plasmons have considerable ohmic loss because of silicon's large permittivity. We introduce air grooves in the silicon surface to reduce the optical thickness of substrate and hence decrease the propagation loss. The properties of graphene plasmons on the corrugated substrates are numerically investigated, in terms of the photon frequency and the geometrical parameters of the corrugated layer, considering both ohmic loss and scattering loss. The plasmons propagation lengths for the corrugated substrates can exceed twice of those for flat silicon in a broadband in mid-infrared. This study may be useful for designing of compact mid-infrared waveguides based on graphene for future photonic integrated circuits.

17.
Small ; 11(5): 591-6, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25273326

RESUMO

The mode hybridization between adjacent graphene nanoribbons determines the integration density of graphene-based plasmonic devices. Here, plasmon hybridization in graphene nanostructures is demonstrated through the characterization of the coupling strength of plasmons in graphene nanoribbons as a function of charge density and inter-ribbon spacing using Fourier transform infrared microscopy. In combination with numerical simulations, it is shown that the plasmon coupling is strongly mediated by the substrate phonons. For polar substrates, the plasmon coupling strength is limited by the plasmon-phonon interactions. In contrast, a nonpolar substrate affects neither the energy distribution of the original plasmon modes in graphene nanostructures nor their plasmon interactions, which increases exponentially as the inter-ribbon spacing decreases. To further explore the potential of graphene broadband plasmonics on nonpolar substrates, a scheme is proposed that uses a metal-dielectric heterostructure to prevent the overlap of plasmons between neighboring graphene nanoribbons. The device structures retain the plasmon resonance frequency of the graphene ribbons and maximally isolate the plasmonic components from the surrounding electromagnetic environment, allowing modular design in integrated plasmonic circuits.

18.
Opt Lett ; 39(6): 1345-8, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24690783

RESUMO

A uniform Fermi level profile is typically assumed in the analysis of a gated graphene nanoribbon, whose Fermi level is actually nonuniform in the experimental measurements. Here, we show that the uniform Fermi level has to be downshifted when it is used to analyze a backgated graphene nanoribbon array (GNRA). The plasmonic extinction behaviors of the GNRAs are perfectly preserved by assuming properly scaled uniform Fermi levels. The scaling factor is independent of the average value of the actual Fermi level profile, but it is a function of the ratio of the nanoribbon width to the distance of the nanoribbons from the backgate. This study facilitates the data postprocessing in the experiments, and may be helpful for analyzing the electron behaviors in GNRAs.

19.
J Nanosci Nanotechnol ; 13(6): 4311-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862492

RESUMO

Nanosphere lithography is an efficient way to fabricate metallic nanostructures with large area. This paper presents the fabrication of metallic hexagonal nano-pyramid arrays by two dimensional nanospheres lithography assisted with O2 plasma treatment. By O2 plasma treatment, the gap and diameter of nanospheres can be modulated. After electron beam deposition, we can fabricate similar nanostructures with different pyramid gap distances. This method may be an easy way to modulate the geometric parameters of nanostructures.

20.
Opt Express ; 21(8): 9437-46, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609655

RESUMO

A metal-insulator-metal (MIM) waveguide can support two plasmonic modes. Efficient conversion between the two modes can be achieved by reshaping of both phase and power density distributions of the guided mode. The converters are designed with the assistance of transformation optics. We propose two practical configurations for mode conversion, which only consist of homogeneous materials yielded from linear coordinate transformations. The functionalities of the converters are demonstrated by full wave simulations. Without consideration of transmission loss, conversion efficiency of as high as 95% can be realized.


Assuntos
Desenho Assistido por Computador , Metais/química , Dispositivos Ópticos , Ressonância de Plasmônio de Superfície/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA