Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 935: 173089, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38734089

RESUMO

Against the backdrop of an uncertain evolution of carbonaceous aerosols in polluted areas over the long term amid air pollution control measures, this 11-year study (2011-2021) investigated fine particulate matter (PM2.5) and carbonaceous components in polluted central China. Organic carbon (OC) and elemental carbon (EC) averaged 16.5 and 3.4 µg/m3, constituting 16 and 3 % of PM2.5 mass. Carbonaceous aerosols dominated PM2.5 (35 and 27 %) during periods of excellent and good air quality, while polluted days witnessed other components as dominants, with a significant decrease in primary organic aerosols and increased secondary pollution. From 2011 to 2021, OC and EC decreased by 53 and 76 %, displaying a high-value oscillation phase (2011-2015) and a low-value fluctuation phase (post-2016). A substantial reduction in high OC and EC concentrations in 2016 marked a milestone in significant air quality improvement attributed to effective control measures, especially targeting OC and EC, evident from their decreased proportion in PM2.5. Primary OC (POC) in winter exhibited the most pronounced reduction (8 % per year), and the seasonal disparities in PM2.5 and carbonaceous components were reduced, showcasing the effectiveness of control measures. Contrary to the more pronounced reduction of EC, which decreased in proportion to PM2.5, secondary OC (SOC) in PM2.5 exhibited an increasing trend. Along with rising OC/EC, SOC/OC, and SOC/EC ratios, this indicates a growing prominence of secondary pollution compared to the decrease in primary pollution. SOC shows an increasing trend with NO2 rise (r = 0.53), without O3 promoting SOC. Positive correlations of SOC with SO2, CO (r = 0.41, 0.59), also highlight their influence on atmospheric conditions, oxidative capacity, and chemical reactions, indirectly impacting SOC formation. The implementation of precise precursor emission reduction measures holds the key to future efforts in mitigating SOC pollution and reducing PM2.5 concentrations, thereby contributing to improved air quality.

2.
J Environ Sci (China) ; 142: 155-168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527881

RESUMO

We conducted a simultaneous field study of PM2.5-bound particulate polycyclic aromatic hydrocarbons (PAHs) and aromatic acids (AAs) in a polluted city Zhengzhou to explore the concentration, sources and potential conversion pathways between PAHs and AAs in different seasons. The average concentrations of PM2.5, 28PAHs and 8AAs during the sampling period were 77 µg/m3, 75 ng/m3, and 283 ng/m3, respectively. The concentration of both 28PAHs and 8AAs were highest in winter and lowest in summer with ratios of 6.3 and 2.3, respectively. PAHs with 5-7 rings were the main components of PAHs (52%), followed by 4 rings PAHs (30%) and 2-3 rings PAHs (18%). According to the source appointment results obtained by positive matrix factorization, the main sources of PAHs were combustion and vehicle emissions, which account for 37% and 34%, respectively. 8AAs were divided into three groups, including four benzene dicarboxylic acids (B2CAs), three benzene tricarboxylic acids (B3CAs) and one benzene tetracarboxylic acid (B4CA). And interspecies correlation analysis with PM2.5 source markers were used to investigate potential sources. Phthalic acid (o-Ph) was the most abundant specie of 8AAs (157 ng/m3, 55% of 8AAs), which was well correlated with sulfate. Meanwhile, B3CAs and B4CA were highly correlated with sulfate and weakly correlated with levoglucosan, suggesting that secondary formation was their main source. As logical oxidation products of PAHs, o-Ph and B3CAs showed good correlations with a number of PAHs, indicating possible photochemical oxidation pathway by PAHs. In addition, O3, NO2, temperature and relative humidity have positive effects on the secondary formation of B3CAs.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Benzeno , Monitoramento Ambiental/métodos , China , Emissões de Veículos/análise , Estações do Ano , Poeira/análise , Carvão Mineral/análise , Sulfatos/análise
3.
Huan Jing Ke Xue ; 45(2): 700-708, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471910

RESUMO

Organic acids in atmospheric particulate matter are widely involved in various physical and chemical reactions in the atmosphere and contribute greatly to the formation of secondary organic aerosols and haze pollutions. Therefore, the concentration distribution characteristics, sources, and secondary formation of organic acids in particulate matter are of great significance for further investigation of organic aerosols and their secondary transformation. Fine particulate matter (PM2.5) samples were collected in Zhengzhou, and three types of organic acids, including dicarboxylic acids, fatty acids, and resin acids, were analyzed to explore their species distribution, seasonal variations, source contribution, and secondary generation. Malonic acid (di-C3) and succinate acid (di-C4) were the most abundant in the identified dicarboxylic acids, which showed obvious seasonal variations in the order of summer > autumn > winter > spring. Fatty acids had the highest concentration in winter and the lowest concentration in spring, showing obvious bimodal advantages, with the most abundant compounds being palmitic acid and stearic acid (C18). Principal component analysis and multiple linear regression (MLR) were used to analyze the source of organic acids in PM2.5 in Zhengzhou; the results showed that 35% of the organic acids came from combustion and traffic sources, 24% from cooking sources, 23% from secondary formation, and 17% from natural sources. The ratios of the selected marker species (i.e., di-C3 / di-C4, F/M, and C18:1 / C18) were used as tracers for the secondary formation of the organic aerosol and its aging process. The results showed that the photochemical reaction was intense in summer, and the proportion of organic aerosol aging or secondary production was high, whereas the photochemical reaction was weak in winter, and the aging degree of organic aerosol was low. Correlation analysis and MLR were used in combination to quantify the relative contribution of gas-phase oxidation and liquid-phase oxidation to dicarboxylic acid formation, and the results showed that gas-phase oxidation played a dominant role in the sampling period (accounting for 58%), especially in summer (61%).

4.
J Environ Manage ; 344: 118555, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37418927

RESUMO

Long-term trends in particulate-bound polycyclic aromatic hydrocarbon (PAH) concentrations in air in Zhengzhou (a severely polluted city in central China) between 2010 and 2018 were studied to assess the effectiveness of an air pollution prevention and control action plan (APPCAP) implemented in 2013. The PM2.5, sum of 16 PAHs (Σ16 PAHs), benzo[a]pyrene (BaP), and BaP toxic equivalent concentrations were high before 2013 but 41%, 77%, 77%, and 78% lower, respectively, after the APPCAP. The maximum daily Σ16 PAHs concentration between 2014 and 2018 was 338 ng/m3, 65% lower than the maximum of 961 ng/m3 between 2010 and 2013. The ratio between the Σ16 PAHs concentrations in winter and summer decreased over time and was 8.0 in 2011 and 1.5 in 2017. The most abundant PAH was benzo[b]fluoranthene, for which the 9-year mean concentration was 14 ± 21 ng/m3 (15% of the Σ16 PAHs concentration). The mean benzo[b]fluoranthene concentration decreased from 28 ± 27 ng/m3 before to 5 ± 4 ng/m3 after the APPCAP (an 83% decrease). The mean daily BaP concentrations were 0.1-62.8 ng/m3, and >56% exceeded the daily standard limit of 2.5 ng/m3 for air. The BaP concentration decreased from 10 ± 8 ng/m3 before to 2 ± 2 ng/m3 after the APPCAP (a 77% decrease). Diagnostic ratios and positive matrix factorization model results indicated that coal combustion and vehicle exhausts were important sources of PAHs throughout the study period, contributing >70% of the Σ16 PAHs concentrations. The APPCAP increased the relative contribution of vehicle exhausts from 29% to 35% but decreased the Σ16 PAHs concentration attributed to vehicle exhausts from 48 to 12 ng/m3. The PAH concentration attributed to vehicle exhausts decreased by 79% even though vehicle numbers strongly increased, indicating that pollution caused by vehicles was controlled well. The relative contribution of coal combustion remained stable but the PAH concentration attributed to coal combustion decreased from 68 ng/m3 before to 13 ng/m3 after the APPCAP. Vehicles made dominant contributions to the incremental lifetime cancer risk (ILCRs) before and after the APPCAP even though the APPCAP decreased the ILCRs by 78%. Coal combustion was the dominant source of PAHs but contributed only 12-15% of the ILCRs. The APPCAP decreased PAH emissions and changed the contributions of different sources of PAHs, and thus strongly affected the overall toxicity of PAHs to humans.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/prevenção & controle , Poluição do Ar/análise , Emissões de Veículos/análise , China , Estações do Ano , Poeira , Carvão Mineral/análise , Medição de Risco
5.
Environ Pollut ; 330: 121736, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37121300

RESUMO

Before and during the COVID-19 outbreak in the heated winter season of 2019, the carbonaceous fractions including organic carbon (OC), elemental carbon (EC), OC1-4, and EC1-5 were investigated between normal (November 1, 2019, to January 24, 2020) and lockdown (January 25, to February 29, 2020) periods in polluted regions of northern Henan Province. In comparison to urban site, four rural sites showed higher concentrations of carbonaceous components, especially secondary OC (SOC); the concentration of SOC in rural sites was 1.5-3.4 times that in the urban site. During the lockdown period, SOC in urban site decreased slightly, while it increased significantly in rural sites. NO2 has a significant effect on SOC generation, particularly in normal period when NO2 concentrations were high. Nevertheless, NO2 significantly decreased, and the elevated O3 (increased by 103-138%) contributed considerably to the generation of SOC during lockdown. Relative humidity (RH) promoted SOC production when RH was below 60%, but SOC was negatively correlated or uncorrelated with RH when RH exceeded 60%. Additionally, RH has a more pronounced effect on SOC during lockdown. The contribution of gasoline vehicle emissions decreases significantly in both urban and rural sites (3-12%) due to the significant reduction of anthropogenic activities during lockdown, although the urban site remained with the biggest contributions (37%). These results provide innovative insights into the variations in carbonaceous aerosols and SOC generation during the unique time when anthropogenic sources were significantly reduced and illustrate the differences in pollution characteristics and sources of carbonaceous fractions in different environments.


Assuntos
Poluentes Atmosféricos , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Dióxido de Nitrogênio , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Aerossóis e Gotículas Respiratórios , China/epidemiologia , Carbono/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA