Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Aging Dis ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37815905

RESUMO

It is well established that decreased brain blood flow, increased reactive oxygen species production (ROS), and pro-inflammatory mechanisms accelerate neurodegenerative disease progressions, including vascular cognitive impairment and dementia (VCID). Previous studies in our laboratory have shown that our novel glycosylated Angiotensin-(1-7) Mas receptor agonist PNA5 reverses cognitive deficits, decreases ROS production, and inhibits inflammatory cytokine production in our preclinical mouse model of VCID that is induced by chronic heart failure (VCID-HF). In the present study, the effects of VCID-HF and treatment with PNA5 on microglia activation, blood-brain-barrier (BBB) integrity, and neurovascular coupling were assessed in our mouse model of VCID-HF. Three-month-old male C57BL/6J mice were subjected to myocardial infarction (MI) to induce heart failure for four weeks and then treated with subcutaneous injections of extended-release PNA5. Microglia activation, BBB permeability, cerebral perfusion, and neurovascular coupling were assessed. Results show that in our VCID-HF model, there was an increase in microglial activation and recruitment within the CA1 and CA3 regions of the hippocampus, a disruption in BBB integrity, and a decrease in neurovascular coupling. Treatment with PNA5 reversed these neuropathological effects of VCID-HF, suggesting that PNA5 may be an effective disease-modifying therapy to treat and prevent VCID. This study identifies potential mechanisms by which heart failure may induce VCID and highlights the possible mechanisms by which treatment with our novel glycosylated Angiotensin-(1-7) Mas receptor agonist, PNA5, may protect cognitive function in our model of VCID.

2.
Physiol Rep ; 11(20): e15838, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37849042

RESUMO

Cardiac ischemic reperfusion injury (IRI) is paradoxically instigated by reestablishing blood-flow to ischemic myocardium typically from a myocardial infarction (MI). Although revascularization following MI remains the standard of care, effective strategies remain limited to prevent or attenuate IRI. We hypothesized that epicardial placement of human placental amnion/chorion (HPAC) grafts will protect against IRI. Using a clinically relevant model of IRI, swine were subjected to 45 min percutaneous ischemia followed with (MI + HPAC, n = 3) or without (MI only, n = 3) HPAC. Cardiac function was assessed by echocardiography, and regional punch biopsies were collected 14 days post-operatively. A deep phenotyping approach was implemented by using histological interrogation and incorporating global proteomics and transcriptomics in nonischemic, ischemic, and border zone biopsies. Our results established HPAC limited the extent of cardiac injury by 50% (11.0 ± 2.0% vs. 22.0 ± 3.0%, p = 0.039) and preserved ejection fraction in HPAC-treated swine (46.8 ± 2.7% vs. 35.8 ± 4.5%, p = 0.014). We present comprehensive transcriptome and proteome profiles of infarct (IZ), border (BZ), and remote (RZ) zone punch biopsies from swine myocardium during the proliferative cardiac repair phase 14 days post-MI. Both HPAC-treated and untreated tissues showed regional dynamic responses, whereas only HPAC-treated IZ revealed active immune and extracellular matrix remodeling. Decreased endoplasmic reticulum (ER)-dependent protein secretion and increased antiapoptotic and anti-inflammatory responses were measured in HPAC-treated biopsies. We provide quantitative evidence HPAC reduced cardiac injury from MI in a preclinical swine model, establishing a potential new therapeutic strategy for IRI. Minimizing the impact of MI remains a central clinical challenge. We present a new strategy to attenuate post-MI cardiac injury using HPAC in a swine model of IRI. Placement of HPAC membrane on the heart following MI minimizes ischemic damage, preserves cardiac function, and promotes anti-inflammatory signaling pathways.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Gravidez , Suínos , Humanos , Feminino , Animais , Placenta/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Traumatismos Cardíacos/tratamento farmacológico , Traumatismos Cardíacos/metabolismo , Traumatismos Cardíacos/patologia , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças
3.
Pharmaceutics ; 14(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335963

RESUMO

Heart failure (HF) causes decreased brain perfusion in older adults, and increased brain and systemic inflammation increases the risk of cognitive impairment and Alzheimer's disease (AD). Glycosylated Ang-(1-7) MasR agonists (PNA5) has shown improved bioavailability, stability, and brain penetration compared to Ang-(1-7) native peptide. Despite promising results and numerous potential applications, clinical applications of PNA5 glycopeptide are limited by its short half-life, and frequent injections are required to ensure adequate treatment for cognitive impairment. Therefore, sustained-release injectable formulations of PNA5 glycopeptide are needed to improve its bioavailability, protect the peptide from degradation, and provide sustained drug release over a prolonged time to reduce injection administration frequency. Two types of poly(D,L-lactic-co-glycolic acid) (PLGA) were used in the synthesis to produce nanoparticles (≈0.769−0.35 µm) and microparticles (≈3.7−2.4 µm) loaded with PNA5 (ester and acid-end capped). Comprehensive physicochemical characterization including scanning electron microscopy, thermal analysis, molecular fingerprinting spectroscopy, particle sizing, drug loading, encapsulation efficiency, and in vitro drug release were conducted. The data shows that despite the differences in the size of the particles, sustained release of PNA5 was successfully achieved using PLGA R503H polymer with high drug loading (% DL) and high encapsulation efficiency (% EE) of >8% and >40%, respectively. While using the ester-end PLGA, NPs showed poor sustained release as after 72 h, nearly 100% of the peptide was released. Also, lower % EE and % DL values were observed (10.8 and 3.4, respectively). This is the first systematic and comprehensive study to report on the successful design, particle synthesis, physicochemical characterization, and in vitro glycopeptide drug release of PNA5 in PLGA nanoparticles and microparticles.

4.
J Neuroinflammation ; 18(1): 236, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654436

RESUMO

BACKGROUND: Decreased cerebral blood flow and systemic inflammation during heart failure (HF) increase the risk for vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer disease-related dementias (ADRD). We previously demonstrated that PNA5, a novel glycosylated angiotensin 1-7 (Ang-(1-7)) Mas receptor (MasR) agonist peptide, is an effective therapy to rescue cognitive impairment in our preclinical model of VCID. Neurofilament light (NfL) protein concentration is correlated with cognitive impairment and elevated in neurodegenerative diseases, hypoxic brain injury, and cardiac disease. The goal of the present study was to determine (1) if treatment with Ang-(1-7)/MasR agonists can rescue cognitive impairment and decrease VCID-induced increases in NfL levels as compared to HF-saline treated mice and, (2) if NfL levels correlate with measures of cognitive function and brain cytokines in our VCID model. METHODS: VCID was induced in C57BL/6 male mice via myocardial infarction (MI). At 5 weeks post-MI, mice were treated with daily subcutaneous injections for 24 days, 5 weeks after MI, with PNA5 or angiotensin 1-7 (500 microg/kg/day or 50 microg/kg/day) or saline (n = 15/group). Following the 24-day treatment protocol, cognitive function was assessed using the Novel Object Recognition (NOR) test. Cardiac function was measured by echocardiography and plasma concentrations of NfL were quantified using a Quanterix Simoa assay. Brain and circulating cytokine levels were determined with a MILLIPLEX MAP Mouse High Sensitivity Multiplex Immunoassay. Treatment groups were compared via ANOVA, significance was set at p < 0.05. RESULTS: Treatment with Ang-(1-7)/MasR agonists reversed VCID-induced cognitive impairment and significantly decreased NfL levels in our mouse model of VCID as compared to HF-saline treated mice. Further, NfL levels were significantly negatively correlated with cognitive scores and the concentrations of multiple pleiotropic cytokines in the brain. CONCLUSIONS: These data show that treatment with Ang-(1-7)/MasR agonists rescues cognitive impairment and decreases plasma NfL relative to HF-saline-treated animals in our VCID mouse model. Further, levels of NfL are significantly negatively correlated with cognitive function and with several brain cytokine concentrations. Based on these preclinical findings, we propose that circulating NfL might be a candidate for a prognostic biomarker for VCID and may also serve as a pharmacodynamic/response biomarker for therapeutic target engagement.


Assuntos
Angiotensina I/agonistas , Angiotensina I/metabolismo , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Demência Vascular/metabolismo , Proteínas de Neurofilamentos/metabolismo , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/metabolismo , Angiotensina I/uso terapêutico , Animais , Biomarcadores/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/patologia , Demência Vascular/tratamento farmacológico , Demência Vascular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/uso terapêutico , Prognóstico , Volume Sistólico/fisiologia
5.
Stem Cell Reports ; 16(10): 2459-2472, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525378

RESUMO

The pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been attributed to its ability to enter through the membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, it has been heavily speculated that angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy may modulate SARS-CoV-2 infection. In this study, exposure of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and human endothelial cells (hECs) to SARS-CoV-2 identified significant differences in protein coding genes involved in immunity, viral response, and cardiomyocyte/endothelial structure. Specifically, transcriptome changes were identified in the tumor necrosis factor (TNF), interferon α/ß, and mitogen-activated protein kinase (MAPK) (hPSC-CMs) as well as nuclear factor kappa-B (NF-κB) (hECs) signaling pathways. However, pre-treatment of hPSC-CMs or hECs with two widely prescribed antihypertensive medications, losartan and lisinopril, did not affect the susceptibility of either cell type to SARS-CoV-2 infection. These findings demonstrate the toxic effects of SARS-CoV-2 in hPSC-CMs/hECs and, taken together with newly emerging multicenter trials, suggest that antihypertensive drug treatment alone does not alter SARS-CoV-2 infection.


Assuntos
Anti-Hipertensivos/farmacologia , Tratamento Farmacológico da COVID-19 , Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , COVID-19/genética , Células Cultivadas , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Lisinopril/farmacologia , Losartan/farmacologia , Miócitos Cardíacos/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transcriptoma/efeitos dos fármacos
6.
J Microbiol Methods ; 189: 106302, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391819

RESUMO

Probiotic strains from the Bifidobacterium or Lactobacillus genera improve health outcomes in models of metabolic and cardiovascular disease. Yet, underlying mechanisms governing these improved health outcomes are rooted in the interaction of gut microbiota, intestinal interface, and probiotic strain. Central to defining the underlying mechanisms governing these improved health outcomes is the development of adaptable and non-invasive tools to study probiotic localization and colonization within the host gut microbiome. The objective of this study was to test labeling and tracking efficacy of Bifidobacterium animalis subspecies lactis 420 (B420) using a common clinical imaging agent, indocyanine green (ICG). ICG was an effective in situ labeling agent visualized in either intact mouse or excised gastrointestinal (GI) tract at different time intervals. Quantitative PCR was used to validate ICG visualization of B420, which also demonstrated that B420 transit time matched normal murine GI motility (~8 hours). Contrary to previous thoughts, B420 did not colonize any region of the GI tract whether following a single bolus or daily administration for up to 10 days. We conclude that ICG may provide a useful tool to visualize and track probiotic species such as B420 without implementing complex molecular and genetic tools. Proof-of-concept studies indicate that B420 did not colonize and establish residency align the murine GI tract.


Assuntos
Bifidobacterium animalis/genética , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Verde de Indocianina/metabolismo , Imagem Óptica/métodos , Animais , Translocação Bacteriana , Bifidobacterium animalis/classificação , Bifidobacterium animalis/isolamento & purificação , Bifidobacterium animalis/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Probióticos , Coloração e Rotulagem
7.
Am J Physiol Heart Circ Physiol ; 319(1): H32-H41, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412785

RESUMO

Disruption of the normal gut microbiome (dysbiosis) is implicated in the progression and severity of myriad disorders, including hypercholesterolemia and cardiovascular disease. Probiotics attenuate and reverse gut dysbiosis to improve cardiovascular risk factors like hypertension and hypercholesterolemia. Lactobacillus reuteri is a well-studied lactic acid-producing probiotic with known cholesterol-lowering properties and anti-inflammatory effects. In the present study, we hypothesized that L. reuteri delivered to hypercholesterolemic low-density lipoprotein receptor knockout (LDLr KO) mice will reduce cholesterol levels and minimize cardiac injury from an ischemic insult. L. reuteri [1 × 109 or 50 × 106 colony-forming units (CFU)/day] was administered by oral gavage to wild-type mice and LDLr KO for up to 6 wk followed by an ischemia-reperfusion (I/R) protocol. After 4 wk of gavage, total serum cholesterol in wild-type mice receiving saline was 113.5 ± 5.6 mg/dL compared with 113.3 ± 6.8 and 101.9 ± 7.5 mg/dL in mice receiving 1 × 109 or 50 × 106 CFU/day, respectively. Over the same time frame, administration of L. reuteri at 1 × 109 or 50 × 106 CFU/day did not lower total serum cholesterol (283.0 ± 11.1, 263.3 ± 5.0, and 253.1 ± 7.0 mg/dL; saline, 1 × 109 or 50 × 106 CFU/day, respectively) in LDLr KO mice. Despite no impact on total serum cholesterol, L. reuteri administration significantly attenuated cardiac injury following I/R, as evidenced by smaller infarct sizes compared with controls in both wild-type and LDLr KO groups. In conclusion, daily L. reuteri significantly protected against cardiac injury without lowering cholesterol levels, suggesting anti-inflammatory properties of L. reuteri uncoupled from improvements in serum cholesterol.NEW & NOTEWORTHY We demonstrated that daily delivery of Lactobacillus reuteri to wild-type and hypercholesterolemic lipoprotein receptor knockout mice attenuated cardiac injury following ischemia-reperfusion without lowering total serum cholesterol in the short term. In addition, we validated protection against cardiac injury using histology and immunohistochemistry techniques. L. reuteri offers promise as a probiotic to mitigate ischemic cardiac injury.


Assuntos
Colesterol/sangue , Traumatismo por Reperfusão Miocárdica/microbiologia , Probióticos/uso terapêutico , Animais , Microbioma Gastrointestinal , Limosilactobacillus reuteri/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Probióticos/administração & dosagem , Receptores de LDL/deficiência , Receptores de LDL/genética
8.
Am J Physiol Heart Circ Physiol ; 318(6): H1461-H1473, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383991

RESUMO

There is a sharp rise in cardiovascular disease (CVD) risk and progression with the onset of menopause. The 4-vinylcyclohexene diepoxide (VCD) model of menopause recapitulates the natural, physiological transition through perimenopause to menopause. We hypothesized that menopausal female mice were more susceptible to CVD than pre- or perimenopausal females. Female mice were treated with VCD or vehicle for 20 consecutive days. Premenopausal, perimenopausal, and menopausal mice were administered angiotensin II (ANG II) or subjected to ischemia-reperfusion (I/R). Menopausal females were more susceptible to pathological ANG II-induced cardiac remodeling and cardiac injury from a myocardial infarction (MI), while perimenopausal, like premenopausal, females remained protected. Specifically, ANG II significantly elevated diastolic (130.9 ± 6.0 vs. 114.7 ± 6.2 mmHg) and systolic (156.9 ± 4.8 vs. 141.7 ± 5.0 mmHg) blood pressure and normalized cardiac mass (15.9 ± 1.0 vs. 7.7 ± 1.5%) to a greater extent in menopausal females compared with controls, whereas perimenopausal females demonstrated a similar elevation of diastolic (93.7 ± 2.9 vs. 100.5 ± 4.1 mmHg) and systolic (155.9 ± 7.3 vs. 152.3 ± 6.5 mmHg) blood pressure and normalized cardiac mass (8.3 ± 2.1 vs. 7.5 ± 1.4%) compared with controls. Similarly, menopausal females demonstrated a threefold increase in fibrosis measured by Picrosirus red staining. Finally, hearts of menopausal females (41 ± 5%) showed larger infarct sizes following I/R injury than perimenopausal (18.0 ± 5.6%) and premenopausal (16.2 ± 3.3, 20.1 ± 4.8%) groups. Using the VCD model of menopause, we provide evidence that menopausal females were more susceptible to pathological cardiac remodeling. We suggest that the VCD model of menopause may be critical to better elucidate cellular and molecular mechanisms underlying the transition to CVD susceptibility in menopausal women.NEW & NOTEWORTHY Before menopause, women are protected against cardiovascular disease (CVD) compared with age-matched men; this protection is gradually lost after menopause. We present the first evidence that demonstrates menopausal females are more susceptible to pathological cardiac remodeling while perimenopausal and cycling females are not. The VCD model permits appropriate examination of how increased susceptibility to the pathological process of cardiac remodeling accelerates from pre- to perimenopause to menopause.


Assuntos
Remodelamento Atrial/fisiologia , Pressão Sanguínea/fisiologia , Doenças Cardiovasculares/fisiopatologia , Cicloexenos , Menopausa/fisiologia , Compostos de Vinila , Angiotensina II , Animais , Doenças Cardiovasculares/induzido quimicamente , Feminino , Camundongos , Modelos Animais
9.
J Int Soc Sports Nutr ; 16(1): 15, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30947727

RESUMO

BACKGROUND: Exercise and heat trigger dehydration and an increase in extracellular fluid osmolality, leading to deficits in exercise performance and thermoregulation. Evidence from previous studies supports the potential for deep-ocean mineral water to improve recovery of exercise performance post-exercise. We therefore wished to determine whether acute rehydration and muscle strength recovery was enhanced by deep-ocean mineral water following a dehydrating exercise, compared to a sports drink or mountain spring water. We hypothesized that muscle strength would decrease as a result of dehydrating exercise, and that recovery of muscle strength and hydration would depend on the type of rehydrating fluid. METHODS: Using a counterbalanced, crossover study design, female (n = 8) and male (n = 9) participants performed a dehydrating exercise protocol under heat stress until achieving 3% body mass loss. Participants rehydrated with either deep-ocean mineral water (Deep), mountain spring water (Spring), or a carbohydrate-based sports drink (Sports) at a volume equal to the volume of fluid loss. We measured relative hydration using salivary osmolality (Sosm) and muscle strength using peak torque from a leg extension maneuver. RESULTS: Sosm significantly increased (p < 0.0001) with loss of body mass during the dehydrating exercise protocol. Males took less time (90.0 ± 18.3 min; P < 0.0034) to reach 3% body mass loss when compared to females (127.1 ± 20.0 min). We used a mono-exponential model to fit the return of Sosm to baseline values during the rehydrating phase. Whether fitting stimulated or unstimulated Sosm, male and female participants receiving Deep as the hydrating fluid exhibited the most rapid return to baseline Sosm (p < 0.0001) regardless of the fit parameter. Males compared to females generated more peak torque (p = 0.0005) at baseline (308.3 ± 56.7 Nm vs 172.8 ± 40.8 Nm, respectively) and immediately following 3% body mass loss (276.3 ± 39.5 Nm vs 153.5 ± 35.9 Nm). Participants experienced a loss. We also identified a significant effect of rehydrating fluid and sex on post-rehydration peak torque (p < 0.0117). CONCLUSION: We conclude that deep-ocean mineral water positively affected hydration recovery after dehydrating exercise, and that it may also be beneficial for muscle strength recovery, although this, as well as the influence of sex, needs to be further examined by future research. TRIAL REGISTRATION: clincialtrials.gov PRS, NCT02486224 . Registered 08 June 2015.


Assuntos
Desidratação , Água Potável , Bebidas Energéticas , Exercício Físico , Hidratação , Águas Minerais/uso terapêutico , Adulto , Desempenho Atlético , Temperatura Corporal , Estudos Cross-Over , Feminino , Frequência Cardíaca , Resposta ao Choque Térmico , Temperatura Alta , Humanos , Masculino , Concentração Osmolar , Equilíbrio Hidroeletrolítico , Adulto Jovem
10.
J Pharmacol Exp Ther ; 369(1): 9-25, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709867

RESUMO

Increasing evidence indicates that decreased brain blood flow, increased reactive oxygen species (ROS) production, and proinflammatory mechanisms accelerate neurodegenerative disease progression such as that seen in vascular contributions to cognitive impairment and dementia (VCID) and Alzheimer's disease and related dementias. There is a critical clinical need for safe and effective therapies for the treatment and prevention of cognitive impairment known to occur in patients with VCID and chronic inflammatory diseases such as heart failure (HF), hypertension, and diabetes. This study used our mouse model of VCID/HF to test our novel glycosylated angiotensin-(1-7) peptide Ang-1-6-O-Ser-Glc-NH2 (PNA5) as a therapy to treat VCID and to investigate circulating inflammatory biomarkers that may be involved. We demonstrate that PNA5 has greater brain penetration compared with the native angiotensin-(1-7) peptide. Moreover, after treatment with 1.0/mg/kg, s.c., for 21 days, PNA5 exhibits up to 10 days of sustained cognitive protective effects in our VCID/HF mice that last beyond the peptide half-life. PNA5 reversed object recognition impairment in VCID/HF mice and rescued spatial memory impairment. PNA5 activation of the Mas receptor results in a dose-dependent inhibition of ROS in human endothelial cells. Last, PNA5 treatment decreased VCID/HF-induced activation of brain microglia/macrophages and inhibited circulating tumor necrosis factor α, interleukin (IL)-7, and granulocyte cell-stimulating factor serum levels while increasing that of the anti-inflammatory cytokine IL-10. These results suggest that PNA5 is an excellent candidate and "first-in-class" therapy for treating VCID and other inflammation-related brain diseases.


Assuntos
Angiotensina I/química , Angiotensina I/farmacologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/tratamento farmacológico , Demência Vascular/complicações , Memória/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/agonistas , Receptores Acoplados a Proteínas G/agonistas , Angiotensina I/farmacocinética , Angiotensina I/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Eletrocardiografia , Glicosilação , Meia-Vida , Insuficiência Cardíaca/complicações , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Proto-Oncogene Mas , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Memória Espacial/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
11.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417081

RESUMO

Here we used mouse models of heart and brain ischemia to compare the inflammatory response to ischemia in the heart, a protein rich organ, to the inflammatory response to ischemia in the brain, a lipid rich organ. We report that ischemia-induced inflammation resolves between one and four weeks in the heart compared to between eight and 24 weeks in the brain. Importantly, we discovered that a second burst of inflammation occurs in the brain between four and eight weeks following ischemia, which coincided with the appearance of cholesterol crystals within the infarct. This second wave shares a similar cellular and molecular profile with atherosclerosis and is characterized by high levels of osteopontin (OPN) and matrix metalloproteinases (MMPs). In order to test the role of OPN in areas of liquefactive necrosis, OPN-/- mice were subjected to brain ischemia. We found that at seven weeks following stroke, the expression of pro-inflammatory proteins and MMPs was profoundly reduced in the infarct of the OPN-/- mice, although the number of cholesterol crystals was increased. OPN-/- mice exhibited faster recovery of motor function and a higher number of neuronal nuclei (NeuN) positive cells in the peri-infarct area at seven weeks following stroke. Based on these findings we propose that the brain liquefies after stroke because phagocytic cells in the infarct are unable to efficiently clear cholesterol rich myelin debris, and that this leads to the perpetuation of an OPN-dependent inflammatory response characterized by high levels of degradative enzymes.


Assuntos
Aterosclerose/complicações , Isquemia Encefálica/complicações , Encéfalo/patologia , Osteopontina/farmacologia , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/patologia , Acidente Vascular Cerebral/metabolismo
12.
J Mol Cell Cardiol ; 122: 88-97, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30102883

RESUMO

Leiomodin-2 (Lmod2) is a striated muscle-specific actin binding protein that is implicated in assembly of thin filaments. The necessity of Lmod2 in the adult mouse and role it plays in the mechanics of contraction are unknown. To answer these questions, we generated cardiac-specific conditional Lmod2 knockout mice (cKO). These mice die within a week of induction of the knockout with severe left ventricular systolic dysfunction and little change in cardiac morphology. Cardiac trabeculae isolated from cKO mice have a significant decrease in maximum force production and a blunting of myofilament length-dependent activation. Thin filaments are non-uniform and substantially reduced in length in cKO hearts, affecting the functional overlap of the thick and thin filaments. Remarkably, we also found that Lmod2 levels are directly linked to thin filament length and cardiac function in vivo, with a low amount (<20%) of Lmod2 necessary to maintain cardiac function. Thus, Lmod2 plays an essential role in maintaining proper cardiac thin filament length in adult mice, which in turn is necessary for proper generation of contractile force. Dysregulation of thin filament length in the absence of Lmod2 contributes to heart failure.


Assuntos
Proteínas do Citoesqueleto/genética , Insuficiência Cardíaca/genética , Contração Muscular/genética , Proteínas Musculares/genética , Miofibrilas/patologia , Análise de Variância , Animais , Cálcio/metabolismo , Ecocardiografia , Técnicas de Inativação de Genes , Insuficiência Cardíaca/patologia , Modelos Lineares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Sarcômeros/patologia , Disfunção Ventricular Esquerda/diagnóstico por imagem
13.
Med Res Arch ; 6(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32149188

RESUMO

According to the CDC (2017), more women than men have died from heart disease over the last 20-25 years. On the contrary, premenopausal women are protected against heart and cardiovascular disease (CVD) compared to men. Following menopause, there is sharp rise in CVD mortality and morbidity in women compared to men indicating that women lose protection against CVD during menopause. This loss of CVD protection in women drives the CDC statistics. Life expectance of women has now reached 82 (almost 35 years longer than at the turn of the 20th century). Yet, women typically undergo menopause at 50-60 years of age, which means that women spend over 40% of their life in menopause. Therefore, menopausal women, and associated CVD risk, must be considered as distinct from an aging or senescent woman. Despite longstanding knowledge that premenopausal women are protected from CVD, our fundamental understanding regarding the shift in CVD risk with menopause remains inadequate and impedes our ability to develop sex-specific therapeutic strategies to combat menopausal susceptibility to CVD. This review provides a critical overview of clinical trials attempting to address CVD susceptibility postmenopausal using hormone replacement therapy. Next, we outline key deficiencies in pre-clinical menopause models and introduce an alternative to overcome these deficiencies. Finally, we discuss a novel connection between AMPK and estrogen-dependent pathways that may serve as a potential solution to increased CVD susceptibility in menopausal women.

14.
Exp Biol Med (Maywood) ; 242(18): 1820-1830, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28901173

RESUMO

A number of signaling pathways underlying pathological cardiac hypertrophy have been identified. However, few studies have probed the functional significance of these signaling pathways in the context of exercise or physiological pathways. Exercise studies were performed on females from six different genetic mouse models that have been shown to exhibit alterations in pathological cardiac adaptation and hypertrophy. These include mice expressing constitutively active glycogen synthase kinase-3ß (GSK-3ßS9A), an inhibitor of CaMK II (AC3-I), both GSK-3ßS9A and AC3-I (GSK-3ßS9A/AC3-I), constitutively active Akt (myrAkt), mice deficient in MAPK/ERK kinase kinase-1 (MEKK1-/-), and mice deficient in cyclin D2 (cyclin D2-/-). Voluntary wheel running performance was similar to NTG littermates for five of the mouse lines. Exercise induced significant cardiac growth in all mouse models except the cyclin D2-/- mice. Cardiac function was not impacted in the cyclin D2-/- mice and studies using a phospho-antibody array identified six proteins with increased phosphorylation (greater than 150%) and nine proteins with decreased phosphorylation (greater than 33% decrease) in the hearts of exercised cyclin D2-/- mice compared to exercised NTG littermate controls. Our results demonstrate that unlike the other hypertrophic signaling molecules tested here, cyclin D2 is an important regulator of both pathologic and physiological hypertrophy. Impact statement This research is relevant as the hypertrophic signaling pathways tested here have only been characterized for their role in pathological hypertrophy, and not in the context of exercise or physiological hypertrophy. By using the same transgenic mouse lines utilized in previous studies, our findings provide a novel and important understanding for the role of these signaling pathways in physiological hypertrophy. We found that alterations in the signaling pathways tested here had no impact on exercise performance. Exercise induced cardiac growth in all of the transgenic mice except for the mice deficient in cyclin D2. In the cyclin D2 null mice, cardiac function was not impacted even though the hypertrophic response was blunted and a number of signaling pathways are differentially regulated by exercise. These data provide the field with an understanding that cyclin D2 is a key mediator of physiological hypertrophy.


Assuntos
Adaptação Fisiológica/fisiologia , Cardiomegalia/metabolismo , Ciclina D2/metabolismo , Atividade Motora/fisiologia , Miócitos Cardíacos/metabolismo , Animais , Ciclina D2/deficiência , Quinase 3 da Glicogênio Sintase/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Transgênicos , Modelos Animais , Fosforilação
15.
Cell Metab ; 25(5): 1012-1026, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467921

RESUMO

Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Exercício Físico/fisiologia , Coração/fisiopatologia , Redes e Vias Metabólicas , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Fenômenos Fisiológicos Cardiovasculares , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Redes Reguladoras de Genes , Coração/fisiologia , Humanos , Miocárdio/metabolismo , Miocárdio/patologia
16.
Am J Physiol Heart Circ Physiol ; 311(1): H125-36, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199124

RESUMO

Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.


Assuntos
Sinalização do Cálcio , Cardiomiopatia Hipertrófica Familiar/enzimologia , Contração Miocárdica , Miocárdio/enzimologia , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/patologia , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Predisposição Genética para Doença , Hidrólise , Cinética , Masculino , Camundongos Transgênicos , Mutação , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Fenótipo , Fosforilação , Caracteres Sexuais , Fatores Sexuais , Remodelação Ventricular
17.
Biosci Rep ; 36(3)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27160081

RESUMO

The pleiotropic nature of oestradiol, the main oestrogen found in women, has been well described in the literature. Oestradiol is positioned to play a unique role since it can respond to environmental, genetic and non-genetic cues to affect genetic expression and cellular signalling. In breast cancer, oestradiol signalling has a dual effect, promoting or inhibiting cancer growth. The potential impact of oestradiol on tumorigenesis depends on the molecular and cellular characteristics of the breast cancer cell. In this review, we provide a broad survey discussing the cellular and molecular consequences of oestrogen signalling in breast cancer. First, we review the structure of the classical oestrogen receptors and resultant transcriptional (genomic) and non-transcriptional (non-genomic) signalling. We then discuss the nature of oestradiol signalling in breast cancer including the specific receptors that initiate these signalling cascades as well as potential outcomes, such as cancer growth, proliferation and angiogenesis. Finally, we examine cellular and molecular mechanisms underlying the dimorphic effect of oestrogen signalling in breast cancer.


Assuntos
Neoplasias da Mama/genética , Estrogênios/genética , Neovascularização Patológica/genética , Receptores de Estrogênio/química , Neoplasias da Mama/patologia , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Estradiol/química , Estradiol/genética , Estrogênios/química , Feminino , Humanos , Neovascularização Patológica/patologia , Receptores de Estrogênio/genética , Transdução de Sinais , Transcriptoma/genética
18.
J Int Soc Sports Nutr ; 13: 17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27087798

RESUMO

BACKGROUND: Dehydration caused by prolonged exercise impairs thermoregulation, endurance and exercise performance. Evidence from animal and human studies validates the potential of desalinated deep-ocean mineral water to positively impact physiological and pathophysiological conditions. Here, we hypothesize that deep-ocean mineral water drawn from a depth of 915 m off the Kona, HI coast enhances recovery of hydration and exercise performance following a dehydrating exercise protocol compared to mountain spring water and a carbohydrate-based sports drink. FINDINGS: Subjects (n = 8) were exposed to an exercise-dehydration protocol (stationary biking) under warm conditions (30 °C) to achieve a body mass loss of 3 % (93.4 ± 21.7 total exercise time). During the post-exercise recovery period, subjects received deep-ocean mineral water (Kona), mountain spring water (Spring) or a carbohydrate-based sports drink (Sports) at a volume (in L) equivalent to body mass loss (in Kg). Salivary samples were collected at regular intervals during exercise and post-exercise rehydration. Additionally, each participant performed peak torque knee extension as a measure of lower body muscle performance. Subjects who received Kona during the rehydrating period showed a significantly more rapid return to pre-exercise (baseline) hydration state, measured as the rate of decline in peak to baseline salivary osmolality, compared to Sports and Spring groups. In addition, subjects demonstrated significantly improved recovery of lower body muscle performance following rehydration with Kona versus Sports or Spring groups. CONCLUSIONS: Deep-ocean mineral water shows promise as an optimal rehydrating source over spring water and/or sports drink.


Assuntos
Atletas , Desempenho Atlético/fisiologia , Desidratação/fisiopatologia , Hidratação/métodos , Águas Minerais , Resistência Física/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Bebidas Gaseificadas , Ingestão de Líquidos , Bebidas Energéticas , Feminino , Humanos , Masculino , Oceanos e Mares
19.
Arch Biochem Biophys ; 601: 32-41, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26971467

RESUMO

Contractile perturbations downstream of Ca(2+) binding to troponin C, the so-called sarcomere-controlled mechanisms, represent the earliest indicators of energy remodeling in the diseased heart [1]. Central to cellular energy "sensing" is the adenosine monophosphate-activated kinase (AMPK) pathway, which is known to directly target myofilament proteins and alter contractility [2-6]. We previously showed that the upstream AMPK kinase, LKB1/MO25/STRAD, impacts myofilament function independently of AMPK [5]. Therefore, we hypothesized that the LKB1 complex associated with myofilament proteins and that alterations in energy signaling modulated targeting or localization of the LKB1 complex to the myofilament. Using an integrated strategy of myofilament mechanics, immunoblot analysis, co-immunoprecipitation, mass spectroscopy, and immunofluorescence, we showed that 1) LKB1 and MO25 associated with myofibrillar proteins, 2) cellular energy stress re-distributed AMPK/LKB1 complex proteins within the sarcomere, and 3) the LKB1 complex localized to the Z-Disk and interacted with cytoskeletal and energy-regulating proteins, including vinculin and ATP Synthase (Complex V). These data represent a novel role for LKB1 complex proteins in myofilament function and myocellular "energy" sensing in the heart.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Troponina C/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Cálcio/metabolismo , Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Contração Muscular , Ratos , Ratos Sprague-Dawley , Sarcômeros/metabolismo
20.
Am J Physiol Regul Integr Comp Physiol ; 309(12): R1546-52, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491098

RESUMO

Premenopausal females are resistant to the development of hypertension, and this protection is lost after the onset of menopause, resulting in a sharp increase in disease onset and severity. However, it is unknown how a fluctuating ovarian hormone environment during the transition from perimenopause to menopause impacts the onset of hypertension, and whether interventions during perimenopause prevent disease onset after menopause. A gradual transition to menopause was induced by repeated daily injections of 4-vinylcyclohexene diepoxide (VCD). ANG II (800 ng·kg(-1)·min(-1)) was infused into perimenopausal and menopausal female mice for 14 days. A separate cohort of mice received 17ß-estradiol replacement during perimenopause. ANG II infusion produced significantly higher mean arterial pressure (MAP) in menopausal vs. cycling females, and 17ß-estradiol replacement prevented this increase. In contrast, MAP was not significantly different when ANG II was infused into perimenopausal and cycling females, suggesting that female resistance to ANG II-induced hypertension is intact during perimenopause. ANG II infusion caused a significant glomerular hypertrophy, and hypertrophy was not impacted by hormonal status. Expression levels of aquaporin-2 (AQP2), a collecting duct protein, have been suggested to reflect blood pressure. AQP2 protein expression was significantly downregulated in the renal cortex of the ANG II-infused menopause group, where blood pressure was increased. AQP2 expression levels were restored to control levels with 17ß-estradiol replacement. This study indicates that the changing hormonal environment in the VCD model of menopause impacts the severity of ANG II-induced hypertension. These data highlight the utility of the ovary-intact VCD model of menopause as a clinically relevant model to investigate the physiological mechanisms of hypertension that occur in women during the transition into menopause.


Assuntos
Angiotensina II , Pressão Arterial/efeitos dos fármacos , Cicloexenos/administração & dosagem , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Menopausa/efeitos dos fármacos , Compostos de Vinila/administração & dosagem , Animais , Aquaporina 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Injeções Intraperitoneais , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Córtex Renal/patologia , Menopausa/metabolismo , Camundongos Endogâmicos C57BL , Perimenopausa , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA