Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931625

RESUMO

Metal-organic frameworks (MOFs) stand out as remarkable materials renowned for their exceptionally high surface area and large number of pores, making them invaluable for diverse sensing applications including gas, biomedical, chemical, and optical sensing. Traditional methods of molecule infusion and release often involve a large number of crystals with varying shapes and sizes, leading to averaged outcomes across a heterogeneous crystal population. In this study, we present continuous monitoring of the infusion and release dynamics of model drug molecules, specifically vitamin B12, within individual Tb-mesoMOF crystals. Our findings underscore the critical influence of crystal size and shape on the infusion and diffusion processes and corresponding color change, underscoring the necessity to account for these factors in the design of large-scale systems. Leveraging optical microscopy, we employed a histogram-based algorithm for image processing, enabling automated tracking of diffusion phenomena. This investigation offers crucial insights into the dynamics of these processes, laying the groundwork for optimizing parameters in future sensing systems.

2.
Biosens Bioelectron ; 103: 138-142, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29291593

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is one of the most important technologies for biochemical analysis critical for diagnosis and monitoring of many diseases. Traditional systems for ELISA incubation and reading are expensive and bulky, thus cannot be used at point-of-care or in the field. Here, we propose and demonstrate a new miniature mobile phone based system for ELISA (MELISA). This system can be used to complete all steps of the assay, including incubation and reading. It weighs just 1 pound, can be fabricated at low cost, portable, and can transfer test results via mobile phone. We successfully demonstrated how MELISA can be calibrated for accurate measurements of progesterone and demonstrated successful measurements with the calibrated system.


Assuntos
Técnicas Biossensoriais/métodos , Telefone Celular , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
3.
Appl Opt ; 56(11): E72-E76, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414344

RESUMO

As part of the Deepwater Horizon toxicity testing program, a number of laboratories generated oil slicks in the laboratory to study potential toxic effects of these oil slicks on aquatic organisms. Understanding the details of how these slicks affect aquatic organisms requires careful correlation between slick thickness and the observed detrimental effects. Estimating oil film thickness on water can be challenging since the traditional color-based technique used in the field is very imprecise. Also, as we demonstrate here, the films formed on the water surface are highly nonuniform on a microscale level, and thus uniform thin film thickness measurement techniques based on optical interference do not work. In this paper, we present a method that estimates the local thickness of weathered oil slicks formed on artificial seawater using light transmission and Beer-Lambert's law. Here, we demonstrate results of careful calibration together with the actual thickness estimation. Due to the heterogeneity of the slicks formed, we present slick thickness as a range of thicknesses collected from multiple points within the oil slick. In all the experiments we used oil samples provided by the Natural Resource Damage Assessment toxicity testing program for the Deepwater Horizon oil spill. Therefore, this study has an important practical value and successfully addresses unique challenges related to measurements involving complex, viscous, paste-like heterogeneous substances such as weathered crude oil.

4.
Biosens Bioelectron ; 88: 204-209, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27567707

RESUMO

Preeclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelet count) syndrome are pregnancy-related complications with high rates of morbidity and mortality. HELLP syndrome, in particular, can be difficult to diagnose. Recent work suggests that elevated levels of free cell hemoglobin in blood plasma can, as early as the first trimester, potentially serve as a diagnostic biomarker for impending complications. We therefore developed a point-of-care mobile phone-based platform that can quickly characterize a patient's level of hemolysis by measuring the color of blood plasma. The custom hardware and software are designed to be easy to use. A sample of the whole blood (~10µL or less) is first collected into a clear capillary tube or microtube, which is then inserted into a low-cost 3D-printed sample holder attached to the phone. A 5-10min period of quiescence allows for gravitational sedimentation of the red blood cells, leaving a layer of yellowish plasma at the top of the tube. The phone camera then photographs the capillary tube and analyzes the color components of the cell-free plasma layer. The software converts these color values to a concentration of free hemoglobin, based on a built-in calibration curve, and reports the patient's hemolysis level: non-hemolyzed, slightly hemolyzed, mildly hemolyzed, frankly hemolyzed, or grossly hemolyzed.. The accuracy of the method is ~1mgdL-1. This phone-based point-of-care system provides the potentially life-saving advantage of a turnaround time of about 10min (versus 4+hours for conventional laboratory analytical methods) and a cost of approximately one dollar USD (assuming you have the phone and the software are already available).


Assuntos
Técnicas Biossensoriais/instrumentação , Telefone Celular/instrumentação , Síndrome HELLP/diagnóstico , Hemólise , Pré-Eclâmpsia/diagnóstico , Desenho de Equipamento , Feminino , Testes Hematológicos/instrumentação , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Gravidez , Sensibilidade e Especificidade
5.
Sci Rep ; 6: 34400, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27694854

RESUMO

Analysis of individual cells at the subcellular level is important for understanding diseases and accelerating drug discovery. Nanoscale endoscopes allow minimally invasive probing of individual cell interiors. Several such instruments have been presented previously, but they are either too complex to fabricate or require sophisticated external detectors because of low signal collection efficiency. Here we present a nanoendoscope that can locally excite fluorescence in labelled cell organelles and collect the emitted signal for spectral analysis. Finite Difference Time Domain (FDTD) simulations have shown that with an optimized nanoendoscope taper profile, the light emission and collection was localized within ~100 nm. This allows signal detection to be used for nano-photonic sensing of the proximity of fluorophores. Upon insertion into the individual organelles of living cells, the nanoendoscope was fabricated and resultant fluorescent signals collected. This included the signal collection from the nucleus of Acridine orange labelled human fibroblast cells, the nucleus of Hoechst stained live liver cells and the mitochondria of MitoTracker Red labelled MDA-MB-231 cells. The endoscope was also inserted into a live organism, the yellow fluorescent protein producing nematode Caenorhabditis elegans, and a fluorescent signal was collected. To our knowledge this is the first demonstration of in vivo, local fluorescence signal collection on the sub-organelle level.


Assuntos
Caenorhabditis elegans/metabolismo , Mitocôndrias Hepáticas/metabolismo , Imagem Molecular/métodos , Nanotecnologia/métodos , Imagem Óptica/métodos , Animais , Linhagem Celular Tumoral , Endoscopia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA