Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805920

RESUMO

The Svx proteins are virulence factors of phytopathogenic bacteria of the Pectobacterium genus. The specific functions of these proteins are unknown. Here we show that most of the phytopathogenic species of Pectobacterium, Dickeya, and Xanthomonas genera have genes encoding Svx proteins, as well as some plant-non-associated species of different bacterial genera. As such, the Svx-like proteins of phytopathogenic species form a distinct clade, pointing to the directed evolution of these proteins to provide effective interactions with plants. To get a better insight into the structure and functions of the Svx proteins, we analyzed the Svx of Pectobacterium atrosepticum (Pba)-an extracellular virulence factor secreted into the host plant cell wall (PCW). Using in silico analyses and by obtaining and analyzing the recombinant Pba Svx and its mutant forms, we showed that this protein was a gluzincin metallopeptidase. The 3D structure model of the Pba Svx was built and benchmarked against the experimental overall secondary structure content. Structure-based substrate specificity analysis using molecular docking revealed that the Pba Svx substrate-binding pocket might accept α-glycosylated proteins represented in the PCW by extensins-proteins that strengthen the PCW. Thus, these results elucidate the way in which the Pba Svx may contribute to the Pba virulence.


Assuntos
Pectobacterium , Fatores de Virulência , Simulação de Acoplamento Molecular , Pectobacterium/metabolismo , Doenças das Plantas/microbiologia , Plantas , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Data Brief ; 29: 105297, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32140513

RESUMO

In enteric bacteria, DNA supercoiling is highly responsive to environmental conditions. Host specific features of environment serve as cues for the expression of genes required for colonization of host niches via changing supercoiling [1]. It has been shown that substitution at position 87 of GyrA of Salmonella enterica str. SL1344 influences global supercoiling and results in an altered transcriptome with increased expression of stress response pathways [2]. Aminocoumarin antibiotics, such as novobiocin, can be used to relax supercoiling and alter the expression of supercoiling-sensitive genes. Meanwhile, Salmonella enterica demonstrates a significant resistance to this antibiotic and relatively small variability of supercoiling in response to the growth phase, osmotic pressure, and novobiocin treatment. Here we present for the first time transcriptome data of Salmonella enterica subsp. Enterica serovar Typhimurium str. 14028S grown in the presence of novobiocin. These data will help identify genes involved in novobiocin resistance and adaptation processes associated with torsion perturbations in S. enterica. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP239815) and have been assigned BioProject accession PRJNA599397.

3.
Data Brief ; 28: 105001, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31909107

RESUMO

Plant growth-promoting rhizobacteria (PGPR) improve plant productivity and stress resistance. The mechanisms involved in plant-microbe interactions include the modulation of plant hormone status. The Novosphingobium sp. strain P6W was previously described as the bacterium capable of abscisic acid (ABA) degradation, and its inoculation decreased ABA concentrations in planta. The metabolic pathway for the ABA degradation in bacteria is still unknown. Here we present transcriptome data of Novosphingobium sp. P6W grown in the medium supplemented with ABA or fructose as the carbon source. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP189498) and have been assigned BioProject accession PRJNA529223.

4.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975812

RESUMO

Mechanisms of microbial catabolism of phytohormone abscisic acid (ABA) are still unknown. Here, we report the complete genome sequence of ABA-utilizing Rhodococcus sp. strain P1Y, isolated from the rice (Oryza sativa L.) rhizosphere. The sequence was obtained using an approach combining Oxford Nanopore Technologies MinION and Illumina MiSeq sequence data.

5.
Protein Sci ; 26(6): 1171-1181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28345263

RESUMO

DNA transposons can be employed for stable gene transfer in vertebrates. The Sleeping Beauty (SB) DNA transposon has been recently adapted for human application and is being evaluated in clinical trials, however its molecular mechanism is not clear. SB transposition is catalyzed by the transposase enzyme, which is a multi-domain protein containing the catalytic and the DNA-binding domains. The DNA-binding domain of the SB transposase contains two structurally independent subdomains, PAI and RED. Recently, the structures of the catalytic domain and the PAI subdomain have been determined, however no structural information on the RED subdomain and its interactions with DNA has been available. Here, we used NMR spectroscopy to determine the solution structure of the RED subdomain and characterize its interactions with the transposon DNA.


Assuntos
Elementos de DNA Transponíveis , DNA/química , Transposases/química , Catálise , Humanos , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos
6.
PLoS One ; 9(11): e112114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375127

RESUMO

The reaction of DNA transposition begins when the transposase enzyme binds to the transposon DNA. Sleeping Beauty is a member of the mariner family of DNA transposons. Although it is an important tool in genetic applications and has been adapted for human gene therapy, its molecular mechanism remains obscure. Here, we show that only the folded conformation of the specific DNA recognition subdomain of the Sleeping Beauty transposase, the PAI subdomain, binds to the transposon DNA. Furthermore, we show that the PAI subdomain is well folded at low temperatures, but the presence of unfolded conformation gradually increases at temperatures above 15°C, suggesting that the choice of temperature may be important for the optimal transposase activity. Overall, the results provide a molecular-level insight into the DNA recognition by the Sleeping Beauty transposase.


Assuntos
Dobramento de Proteína , Transposases/química , Transposases/metabolismo , Elementos de DNA Transponíveis/fisiologia , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Temperatura , Tirosina/química
7.
Phys Chem Chem Phys ; 15(39): 16725-35, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23985972

RESUMO

Two diterpenoid surfactants with ammonium head groups and bromide (S1) or tosylate (S2) counterions have been synthesized. Exploration of these biomimetic species made it possible to demonstrate that even minor structural changes beyond their chemical nature may dramatically affect their solution behavior. While their aggregation thresholds differ inconsiderably, morphological behavior and affinity to lipid bilayer are strongly dependent on the counterion nature. Compound S2 demonstrates properties of typical surfactants and forms small micelle-like aggregates above critical micelle concentration. For surfactant S1, two critical concentrations and two types of aggregates occur. Structural transitions have been observed between small micelles and aggregates with higher aggregation numbers and hydrodynamic diameter of ca. 150 nm. Unlike S2, surfactant S1 is shown to integrate with liposomes based on dipalmitoylphosphatidylcholine, resulting in a decrease of the temperature of the main phase transition. Both surfactants demonstrate an effective complexation capacity toward oligonucleotide (ONu), which is supported by recharging the surfactant-ONu complexes and the ethidium bromide exclusion at a low N/P ratio. Meanwhile, a very weak complexation of plasmid DNA with the surfactants has been revealed in the gel electrophoresis experiment. The DNA transfer to bacterial cells mediated by the surfactant S1 is shown to depend on the protocol used. In the case of the electroporation, the inhibition of the cell transformation occurs in the presence of the surfactant, while upon the chemical treatment no surfactant effect has been observed. The variability in the morphology, the biocompatibility, the nanoscale dimension and the high binding capacity toward the DNA decamer make it possible to nominate the designed surfactants as promising carriers for biosubstrates or as a helper surfactant for the mixed liposome-surfactant nanocontainers.


Assuntos
Materiais Biocompatíveis/química , Diterpenos do Tipo Caurano/química , Tensoativos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Modelos Moleculares , Estrutura Molecular , Nanotecnologia , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA