Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 20(Suppl 1): 310, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050874

RESUMO

BACKGROUND: Threshability, rachis fragility and spike shape are critical traits for the domestication and evolution of wheat, determining the crop yield and efficiency of the harvest. Spelt factor gene Q controls a wide range of domestication-related traits in polyploid wheats, including those mentioned above. The main goal of the present study was to characterise the Q gene for uninvestigated accessions of wheats, including four endemics, and Aegilops accessions, and to analyze the species evolution based on differences in Q gene sequences. RESULTS: We have studied the spike morphology for 15 accessions of wheat species, including four endemics, namely Triticum macha, T. tibetanum, T. aestivum ssp. petropavlovskyi and T. spelta ssp. yunnanense, and 24 Aegilops accessions, which are donors of B and D genomes for polyploid wheat. The Q-5A, q-5D and q-5S genes were investigated, and a novel allele of the Q-5A gene was found in accessions of T. tibetanum (KU510 and KU515). This allele was similar to the Q allele of T. aestivum cv. Chinese Spring but had an insertion 161 bp in length within exon 5. This insertion led to a frameshift and premature stop codon formation. Thus, the T. tibetanum have spelt spikes, which is probably determined by the gene Tg, rather than Q. We determined the variability within the q-5D genes among hexaploid wheat and their D genome donor Aegilops tauschii. Moreover, we studied the accessions C21-5129, KU-2074, and K-1100 of Ae. tauschii ssp. strangulata, which could be involved in the origin of hexaploid wheats. CONCLUSIONS: The variability and phylogenetic relationships of the Q gene sequences studied allowed us to clarify the relationships between species of the genus Triticum and to predict the donor of the D genome among the Ae. tauschii accessions. Ae. tauschii ssp. strangulata accessions C21-5129, KU-2074 and K-1100 are the most interesting among the analysed accessions, since their partial sequence of q-5D is identical to the q-5D of T. aestivum cv. Chinese Spring. This result indicates that the donor is Ae. tauschii ssp. strangulata but not Ae. tauschii ssp. tauschii. Our analysis allowed us to clarify the phylogenetic relationships in the genus Triticum.


Assuntos
Aegilops/genética , Genes de Plantas , Variação Genética , Triticum/genética , Aegilops/classificação , Alelos , Evolução Molecular , Filogenia , Poliploidia , Triticum/classificação
2.
BMC Genet ; 18(Suppl 1): 106, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297308

RESUMO

BACKGROUND: In rice, a variant of DEP1 gene results in erect panicle architecture, well-developed vascular bundles, an increase in the number of grains per panicle and a consequent increase in the grain yield. Interestingly, DEP1 homologs are present in the other cereals including species of wheat and barley (Hordeum vulgare), even though they do not produce panicles but spikes. In barley, HvDEP1 alleles do not differ between strains of various ear types and geographic origins, while in at least three OsDEP1 variants have been described. RESULTS: In this work, we have studied the DEP1 gene from eight accessions which belong to four wheat species, T. monococcum, T. durum, T. compactum, and T. spelta, with either compact, compactoid or normal spike phenotypes. The nucleotide sequences of the 5th exon of DEP1 were determined for all eight accessions. Obtained sequences were species specific. Despite the interspecies diversity, all wheat sequences encoded polypeptides of the same size, similarly to the 5th exons of the DEP1 homologs in T. aestivum, T. urartu, and H. vulgare. For further study, the full-length sequences of the DEP1 gene for all four species were studied. The full-length DEP1 genomic copies were isolated from the genomic sequences of T. aestivum, T. urartu, and Aegilops tauschii. The genome of tetraploid wheat T. durum contains two variants of the DEP1 originating from A and B genomes. In the hexaploid wheats T. aestivum, T. compactum, and T. spelta, three variants of this gene originating from A, B, and D genomes were detected. DEP1 genes of the diploid wheats T. monococcum and T. urartu differ. It seems that a precursor of the DEP1 gene in T. monococcum originates from the wild progenitor T. boeoticum. CONCLUSION: No DEP1-related differences of nucleotide sequences between the compact (or compactoid) and normal spike phenotypes in the tested wheat species were detected. Therefore, DEP1 gene does not directly participate in the control of the spike architecture in wheats.


Assuntos
Genes de Plantas , Proteína de Ligação a Fosfatidiletanolamina/genética , Triticum/genética , Variação Genética , Proteínas de Plantas/genética , Especificidade da Espécie , Triticum/anatomia & histologia
3.
PLoS One ; 11(10): e0164915, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27755577

RESUMO

Over the past decade, the free-living flatworm Macrostomum lignano has been successfully used in many areas of biology, including embryology, stem cells, sexual selection, bioadhesion and aging. The increased use of this powerful laboratory model, including the establishment of genomic resources and tools, makes it essential to have a detailed description of the chromosome organization of this species, previously suggested to have a karyotype with 2n = 8 and one pair of large and three pairs of small metacentric chromosomes. We performed cytogenetic analyses for chromosomes of one commonly used inbred line of M. lignano (called DV1) and uncovered unexpected chromosome number variation in the form of aneuploidies of the largest chromosomes. These results prompted us to perform karyotypic studies in individual specimens of this and other lines of M. lignano reared under laboratory conditions, as well as in freshly field-collected specimens from different natural populations. Our analyses revealed a high frequency of aneuploids and in some cases other numerical and structural chromosome abnormalities in laboratory-reared lines of M. lignano, and some cases of aneuploidy were also found in freshly field-collected specimens. Moreover, karyological analyses were performed in specimens of three further species: Macrostomum sp. 8 (a close relative of M. lignano), M. spirale and M. hystrix. Macrostomum sp. 8 showed a karyotype that was similar to that of M. lignano, with tetrasomy for its largest chromosome being the most common karyotype, while the other two species showed a simpler karyotype that is more typical of the genus Macrostomum. These findings suggest that M. lignano and Macrostomum sp. 8 can be used as new models for studying processes of partial genome duplication in genome evolution.


Assuntos
Cromossomos , Platelmintos/genética , Animais , Evolução Biológica , Análise Citogenética , Sondas de DNA/metabolismo , Hibridização in Situ Fluorescente , Cariótipo , Metáfase , Platelmintos/crescimento & desenvolvimento
4.
BMC Plant Biol ; 16(Suppl 3): 244, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28105956

RESUMO

BACKGROUND: Vernalization genes VRN1 play a major role in the transition from vegetative to reproductive growth in wheat. In di-, tetra- and hexaploid wheats the presence of a dominant allele of at least one VRN1 gene homologue (Vrn-A1, Vrn-B1, Vrn-G1 or Vrn-D1) determines the spring growth habit. Allelic variation between the Vrn-1 and vrn-1 alleles relies on mutations in the promoter region or the first intron. The origin and variability of the dominant VRN1 alleles, determining the spring growth habit in tetraploid wheat species have been poorly studied. RESULTS: Here we analyzed the growth habit of 228 tetraploid wheat species accessions and 25 % of them were spring type. We analyzed the promoter and first intron regions of VRN1 genes in 57 spring accessions of tetraploid wheats. The spring growth habit of most studied spring accessions was determined by previously identified dominant alleles of VRN1 genes. Genetic experiments proof the dominant inheritance of Vrn-A1d allele which was widely distributed across the accessions of Triticum dicoccoides. Two novel alleles were discovered and designated as Vrn-A1b.7 and Vrn-B1dic. Vrn-A1b.7 had deletions of 20 bp located 137 bp upstream of the start codon and mutations within the VRN-box when compared to the recessive allele of vrn-A1. So far the Vrn-A1d allele was identified only in spring accessions of the T. dicoccoides and T. turgidum species. Vrn-B1dic was identified in T. dicoccoides IG46225 and had 11 % sequence dissimilarity in comparison to the promoter of vrn-B1. The presence of Vrn-A1b.7 and Vrn-B1dic alleles is a predicted cause of the spring growth habit of studied accessions of tetraploid species. Three spring accessions T. aethiopicum K-19059, T. turanicum K-31693 and T. turgidum cv. Blancal possess recessive alleles of both VRN-A1 and VRN-B1 genes. Further investigations are required to determine the source of spring growth habit of these accessions. CONCLUSIONS: New allelic variants of the VRN-A1 and VRN-B1 genes were identified in spring accessions of tetraploid wheats. The origin and evolution of VRN-A1 alleles in di- and tetraploid wheat species was discussed.


Assuntos
Alelos , Variação Genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/genética , Sequência de Bases , Íntrons , Proteínas de Plantas/metabolismo , Especificidade da Espécie , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA