Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 567(7747): 200-203, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867610

RESUMO

In the era of precision cosmology, it is essential to determine the Hubble constant empirically with an accuracy of one per cent or better1. At present, the uncertainty on this constant is dominated by the uncertainty in the calibration of the Cepheid period-luminosity relationship2,3 (also known as the Leavitt law). The Large Magellanic Cloud has traditionally served as the best galaxy with which to calibrate Cepheid period-luminosity relations, and as a result has become the best anchor point for the cosmic distance scale4,5. Eclipsing binary systems composed of late-type stars offer the most precise and accurate way to measure the distance to the Large Magellanic Cloud. Currently the limit of the precision attainable with this technique is about two per cent, and is set by the precision of the existing calibrations of the surface brightness-colour relation5,6. Here we report a calibration of the surface brightness-colour relation with a precision of 0.8 per cent. We use this calibration to determine a geometrical distance to the Large Magellanic Cloud that is precise to 1 per cent based on 20 eclipsing binary systems. The final distance is 49.59 ± 0.09 (statistical) ± 0.54 (systematic) kiloparsecs.

2.
Nature ; 495(7439): 76-9, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23467166

RESUMO

In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.

3.
Nature ; 484(7392): 75-7, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481359

RESUMO

RR Lyrae pulsating stars have been extensively used as tracers of old stellar populations for the purpose of determining the ages of galaxies, and as tools to measure distances to nearby galaxies. There was accordingly considerable interest when the RR Lyrae star OGLE-BLG-RRLYR-02792 (referred to here as RRLYR-02792) was found to be a member of an eclipsing binary system, because the mass of the pulsator (hitherto constrained only by models) could be unambiguously determined. Here we report that RRLYR-02792 has a mass of 0.26 solar masses M[symbol see text] and therefore cannot be a classical RR Lyrae star. Using models, we find that its properties are best explained by the evolution of a close binary system that started with M[symbol see text] and 0.8M[symbol see text]stars orbiting each other with an initial period of 2.9 days. Mass exchange over 5.4 billion years produced the observed system, which is now in a very short-lived phase where the physical properties of the pulsator happen to place it in the same instability strip of the Hertzsprung-Russell diagram as that occupied by RR Lyrae stars. We estimate that only 0.2 per cent of RR Lyrae stars may be contaminated by systems similar to this one, which implies that distances measured with RR Lyrae stars should not be significantly affected by these binary interlopers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA