Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 15(1): 52, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173725

RESUMO

Metabolomics experiments generate highly complex datasets, which are time and work-intensive, sometimes even error-prone if inspected manually. Therefore, new methods for automated, fast, reproducible, and accurate data processing and dereplication are required. Here, we present UmetaFlow, a computational workflow for untargeted metabolomics that combines algorithms for data pre-processing, spectral matching, molecular formula and structural predictions, and an integration to the GNPS workflows Feature-Based Molecular Networking and Ion Identity Molecular Networking for downstream analysis. UmetaFlow is implemented as a Snakemake workflow, making it easy to use, scalable, and reproducible. For more interactive computing, visualization, as well as development, the workflow is also implemented in Jupyter notebooks using the Python programming language and a set of Python bindings to the OpenMS algorithms (pyOpenMS). Finally, UmetaFlow is also offered as a web-based Graphical User Interface for parameter optimization and processing of smaller-sized datasets. UmetaFlow was validated with in-house LC-MS/MS datasets of actinomycetes producing known secondary metabolites, as well as commercial standards, and it detected all expected features and accurately annotated 76% of the molecular formulas and 65% of the structures. As a more generic validation, the publicly available MTBLS733 and MTBLS736 datasets were used for benchmarking, and UmetaFlow detected more than 90% of all ground truth features and performed exceptionally well in quantification and discriminating marker selection. We anticipate that UmetaFlow will provide a useful platform for the interpretation of large metabolomics datasets.

2.
Molecules ; 26(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770989

RESUMO

Streptomyces are well-known producers of a range of different secondary metabolites, including antibiotics and other bioactive compounds. Recently, it has been demonstrated that "silent" biosynthetic gene clusters (BGCs) can be activated by heterologously expressing transcriptional regulators from other BGCs. Here, we have activated a silent BGC in Streptomyces sp. CA-256286 by overexpression of a set of SARP family transcriptional regulators. The structure of the produced compound was elucidated by NMR and found to be an N-acetyl cysteine adduct of the pyranonaphtoquinone polyketide 3'-O-α-d-forosaminyl-(+)-griseusin A. Employing a combination of multi-omics and metabolic engineering techniques, we identified the responsible BGC. These methods include genome mining, proteomics and transcriptomics analyses, in combination with CRISPR induced gene inactivations and expression of the BGC in a heterologous host strain. This work demonstrates an easy-to-implement workflow of how silent BGCs can be activated, followed by the identification and characterization of the produced compound, the responsible BGC, and hints of its biosynthetic pathway.


Assuntos
Biologia Computacional , Streptomyces/química , Fatores de Transcrição/metabolismo , Estrutura Molecular , Naftoquinonas/análise , Naftoquinonas/metabolismo , Streptomyces/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/genética
3.
Sci Rep ; 11(1): 18301, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526549

RESUMO

Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.


Assuntos
Expressão Gênica , Engenharia Genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Streptomyces/genética , Biologia Computacional/métodos , Mineração de Dados , Engenharia Genética/métodos , Genoma Bacteriano , Genômica/métodos , Família Multigênica , Fenótipo , Plasmídeos/genética , Proteínas Recombinantes/isolamento & purificação , Metabolismo Secundário , Streptomyces/metabolismo
4.
Microbiol Resour Announc ; 10(30): e0049921, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34323613

RESUMO

Here, we report the sequencing, assembly, and annotation of the genome of the rare actinobacterium Kutzneria sp. strain CA-103260. The genome of CA-103260 was sequenced using PacBio and Illumina technologies and it consists of a circular 11,609,901-bp chromosome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA