Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Physiol Pharmacol ; 71(3)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32991312

RESUMO

Gut-brain axis plays a central role in the regulation of stress related diseases such as irritable bowel syndrome (IBS) or inflammatory bowel disease (IBD). It is increasingly recognized that stress modulates gut microbiota community structure and activity and represents an important causal factor in dysbiosis. This study was designed to determine the effect of daily treatment with synbiotic (Syngut) containing inulin, Lactobacillus acidophilus, Bifidobacterium lactis W51, Lactobacillus plantarum W21 and Lactococcus lactis applied i.g. at a dose of 50 mg/kg i.g. on the colonic damage and colonic mucosal blood flow in rats with experimentally induced TNBS-colitis that were additionally exposed or not to acute stress (episodes of cold restraint stress every other day before colitis induction). Control rats received daily treatment with vehicle (saline, i.g.) or mesalazine (50 mg/kg-d i.g.), the standard drug recommended in therapy of IBD. At the termination of TNBS colitis, the histologic evaluation of colonic mucosa, mucosal malonyldialdehyde (MDA) level and plasma concentrations of proinflammatory cytokines (TNF-α, IL-1ß) and adipokine adiponectin were assessed. the samples of colonic mucosa not involving colonic lesions and surrounding the flared mucosa were excised for the determination of mRNA expression for proinflammatory biomarkers TNF-α, IL-1ß, IL-10 and COX-2 as well as antioxidazing factors SOD-1 and SOD-2. Finally, the gut microbial profiles were analyzed by 16S rRNA sequencing at phylum, family and genus level. Episodes of cold stress significantly aggravated the course of TNBS colitis, and significantly increased the release of proinflammatory cytokines as well as the significant increase in the MDA concentration has been observed as compared with non-stressed TNBS rats. These changes were followed by the significant fall in the CBF and plasma adiponectin levels and by the overexpression of mRNA of proinflammatory biomarkers. Synbiotic treatment with Syngut significantly reduced the area of colonic lesions observed macroscopically and microscopically in rats with TNBS colitis with or without exposure to cold stress, significantly increased the CBF, normalized plasma adiponectin levels and significantly attenuated the release and colonic expression of proinflammatory cytokines and biomarkers. the analysis of the gut microbiota showed a significant reduction of microbial diversity (Shannon index) in rats with TNBS colitis with or without exposure to stress. The therapy with Syngut failed to significantly affect the alpha diversity. At the phylum level, the significant rise in Proteobacteria has been observed in stressed rats with TNBS colitis and this effects was attenuated by treatment with Syngut. At family level, TNBS colitis alone or in combination with stress led to a significant decrease of SCFA producing bacterial taxa such as Ruminococaceae and Lachnospiraceae and Syngut counteracted this effect. We conclude that: 1) cold stress exacerbates the gastrointestinal inflammation in experimental colitis; 2) the synbiotic therapy with Syngut ameliorates the gut inflammation in rats with TNBS colitis combined with cold stress; 3) the beneficial effect of Syngut is accompanied by increase of anti-inflammatory taxa such as Ruminococaceae and Lachnospiraceae, and 4) the modulation of gut microbiota with Syngut alleviates stress-related intestinal inflammation suggesting a potential usefulness of synbiotic therapy in intestinal disorders accompanied by stress in patients with IBD.


Assuntos
Bifidobacterium animalis/metabolismo , Colite/terapia , Colo/microbiologia , Microbioma Gastrointestinal , Inulina/metabolismo , Lactobacillus/metabolismo , Simbióticos , Adiponectina/sangue , Animais , Bifidobacterium animalis/crescimento & desenvolvimento , Temperatura Baixa , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Modelos Animais de Doenças , Mediadores da Inflamação/sangue , Lactobacillus/crescimento & desenvolvimento , Lactobacillus acidophilus/metabolismo , Lactobacillus plantarum/metabolismo , Masculino , Ratos Wistar , Ácido Trinitrobenzenossulfônico
2.
J Physiol Pharmacol ; 67(6): 859-866, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28195066

RESUMO

Clostridium difficile infection (CDI) is the most common cause of infectious diarrhea and represents an important burden for healthcare worldwide. Symptoms of severe CDI include watery, foul-smelling diarrhea, peripheral leucocytosis, increased C-reactive protein (CRP), acute renal failure, hypotension and pseudomembranous colitis. Recent studies indicate that the main cause of CDI is dysbiosis, an imbalance in the normal gut microbiota. The restoration of a healthy gut microbiota composition via fecal microbiota transplantation (FMT) recently became more popular. The aim of the present study was to assess the effect of FMT on the healing of CDI and to analyze the changes in the level of pro-inflammatory markers (C-reactive protein, fecal calprotectin) and pro-inflammatory cytokines. Eighteen patients with CDI were included in our study (6 males and 12 females) with recurrent and/or severe CDI. The FMT was performed in 17 patients using colonoscopy, including 16 patients receiving a one-time FMT and 1 patient who needed 2 additional FMTs. One patient was treated with a single round of FMT using push-and-pull enteroscopy. In all CDI patients, before and 3 weeks after FMT, the following parameters were analyzed: C-reactive protein, fecal calprotectin, and plasma interleukin (IL)-6, IL-8 and IL-12, and tumor necrosis factor-alpha (TNF-α). In addition, the plasma level of LL-37, a cathelicidine peptide was assessed by fluorescence-activated cell sorting (FACS) before and 3 months after FMT. Finally, in 7 patients a microbiome analysis was performed by sequencing of 16SrRNA in stool probes obtained before and 3 weeks after FMT. The healing rate of CDI was 94%. In all successfully treated patients no recurrent CDI was observed during follow-up (16 months). The serum level of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-8 and IL-12) significantly decreased after FMT. Similarly, CRP and fecal calprotectin normalized after FMT. 3 months after FMT a significant increase of LL-37 in the plasma of successfully treated patients was monitored. The sequencing analysis demonstrated an elevated abundance of beneficial bacterial species such as Lactobacillaceae, Ruminococcaceae, Desulfovibrionaceae, Sutterellaceae and Porphyromonodacea after FMT. No serious side effects were observed. We concluded that FMT represented a very effective and safe treatment of recurrent and/or severe CDI and led to favorable shifts in the composition of gut microbiome.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Idoso , Antibacterianos/administração & dosagem , Proteína C-Reativa/metabolismo , Colonoscopia/métodos , Diarreia/microbiologia , Diarreia/terapia , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/terapia , Transplante de Microbiota Fecal/métodos , Feminino , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/terapia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA