Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Chem Biodivers ; 21(2): e202301263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108650

RESUMO

his comprehensive review is designed to evaluate the anticancer properties of ß-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of ß-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural ß-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived ß-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of ß-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of ß-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.


Assuntos
Alcaloides , Plantas Medicinais , Harmina/farmacologia , Harmalina/farmacologia , Carbolinas/farmacologia , Alcaloides/farmacologia
2.
Arch Physiol Biochem ; 129(5): 1091-1104, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33840309

RESUMO

OBJECTIVE: The effect of Alstonia boonei fractions on glucose homeostasis was investigated via in vitro enzyme inhibition activity, ex vivo glucose uptake assay, and in vivo methods in diabetic rats. METHODOLOGY: A. boonei fractions were subjected to in vitro α-glucosidase inhibitory assay and then ex vivo glucose uptake activity. The butanol fraction of the leaves (ABBF) was picked for the in vivo assay since it showed more activity in the initial tests conducted. ABBF was administrated via oral dosing to six-weeks old fructose-fed STZ-induced type 2 diabetic rats over a 5-week experimental period. RESULTS: ABBF treatment at a low dose of 150 mg/kg bw, significantly (p < .05) reduced blood glucose level, enhanced oral glucose tolerance ability, restored insulin secretion and hepatic glycogen synthesis as well as promoted islet regeneration than the high dose (300 mg/kg bw). CONCLUSION: These results suggest that ABBF could be exploited as a therapeutic potential for treating T2D.


Assuntos
Alstonia , Diabetes Mellitus Experimental , Ratos , Animais , Hipoglicemiantes/efeitos adversos , Butanóis/efeitos adversos , Extratos Vegetais/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , 1-Butanol/efeitos adversos , Estresse Oxidativo , Glucose/efeitos adversos , Folhas de Planta , Glicemia
3.
Arch Physiol Biochem ; 129(1): 157-167, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32799570

RESUMO

This present study investigated the antioxidative and antidiabetic properties of kolaviron by analysing its inhibitory effect on key metabolic activities linked to T2D, in vitro and ex vivo. Kolaviron significantly inhibited α-glucosidase and α-amylase activities, and intestinal glucose absorption dose-dependently, while promoting muscle glucose uptake. Induction of oxidative pancreatic injury significantly depleted glutathione level, superoxide dismutase, catalase, and ATPase activities, while elevating malondialdehyde and nitric oxide levels, acetylcholinesterase and chymotrypsin activities. These levels and activities were significantly reversed in tissues treated with kolaviron. Kolaviron depleted oxidative-induced metabolites, with concomitant restoration of oxidative-depleted metabolites. It also inactivated oxidative-induced ascorbate and aldarate metabolism, pentose and glucuronate interconversions, fructose and mannose metabolism, amino sugar and nucleotide sugar metabolism, and arginine and proline metabolism, while reactivating selenocompound metabolism. These results depict the antidiabetic properties of kolaviron as indicated by its ability to attenuate oxidative-induced enzyme activities and dysregulated metabolisms, and modulated the enzyme activities linked to hyperglycaemia.


Assuntos
Acetilcolinesterase , Glucose , Glucose/metabolismo , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Flavonoides/farmacologia , Hipoglicemiantes/farmacologia , Músculos , Extratos Vegetais/farmacologia
4.
J Food Biochem ; 46(4): e13641, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555086

RESUMO

The antidiabetic properties of ferulic acid and its protective role against Fe2+ -induced oxidative pancreatic injury were investigated in this study using in vitro and ex vivo models. Induction of oxidative injury in the pancreas was achieved by incubating normal pancreatic tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of ferulic acid for 30 min at 37°C. Ferulic acid inhibited the activities of α-glucosidase, α-amylase, and pancreatic lipase significantly (p < .05) and promoted glucose uptake in isolated rat psoas muscles. Induction of oxidative pancreatic injury caused significant (p < .05) depletion of glutathione (GSH) level, superoxide dismutase (SOD), and catalase activities, as well as elevation of malondialdehyde (MDA) and nitric oxide (NO) levels, acetylcholinesterase and chymotrypsin activities. Treatment of tissues with ferulic acid significantly (p < .05) reversed these levels and activities. LC-MS analysis of the extracted metabolites revealed 25% depletion of the normal metabolites with concomitant generation of m-Chlorohippuric acid, triglyceride, fructose 1,6-bisphosphate, and ganglioside GM1 in oxidative-injured pancreatic tissues. Treatment with ferulic acid restored uridine diphosphate glucuronic acid and adenosine tetraphosphate and generated P1,P4-Bis(5'-uridyl) tetraphosphate and L-Homocysteic acid, while totally inactivating oxidative-generated metabolites. Ferulic acid also inactivated oxidative-activated pathways, with concomitant reactivation of nucleotide sugars metabolism, starch and sucrose metabolism, and rostenedione metabolism, estrone metabolism, androgen and estrogen metabolism, porphyrin metabolism, and purine metabolism pathways. Taken together, our results indicate the antidiabetic and protective potential of ferulic acid as depicted by its ability to facilitate muscle glucose uptake, inhibit carbohydrate and lipid hydrolyzing enzymes, and modulate oxidative-mediated dysregulated metabolisms. PRACTICAL APPLICATIONS: There have been increasing concerns on the side effects associated with the use of synthetic antidiabetic drug, coupled with their expenses particularly in developing countries. This has necessitated continuous search for alternative treatments especially from natural products having less or no side effects and are readily available. Ferulic acid is among the common phenolics commonly found in fruits and vegetables. In this present study, ferulic acid was able to attenuate oxidative stress, cholinergic dysfunction, and proteolysis in oxidative pancreatic injury, as well as inhibit carbohydrate digesting enzymes. Thus, indicating the ability of the phenolic to protect against complications linked to diabetes. Crops rich in ferulic acid maybe beneficial in managing this disease.


Assuntos
Ácidos Cumáricos , Estresse Oxidativo , Pancreatopatias , Acetilcolinesterase/metabolismo , Animais , Carboidratos , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Glutationa/metabolismo , Hipoglicemiantes/farmacologia , Ferro , Redes e Vias Metabólicas , Músculos/metabolismo , Oxirredução , Pâncreas , Pancreatopatias/tratamento farmacológico , Pancreatopatias/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Biomed Pharmacother ; 146: 112454, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34894518

RESUMO

Pro-inflammatory signaling, cell death, and metalloproteinases activation are events in Plasmodium infection. However, it is not known if treatment with mefloquine (MF), and curcumin (CM) supplementation, will modulate these conditions. Malaria was induced in two different studies using susceptible (NK 65, study 1) and resistant (ANKA, study 2) strains of mouse malaria parasites (Plasmodium berghei) in thirty male Swiss mice (n = 5) in each study. Following confirmation of parasitemia, mice received 10 mL/kg distilled water (infected control), MF (10 mg/kg), MF and CM (25 mg/kg), MF and CM (50 mg/kg), CM (25 mg/kg) and CM (50 mg/kg). Five mice (not infected) were used as control. After treatment, the animals were sacrificed, serum obtained and liver mitochondria were isolated. Serum Tumour Necrosis Factor alpha (TNF-α), C-reactive protein (CRP), Interleukins-1 beta (IL-1ß) and Interleukins-6 (IL-6) as well as caspases-3, 9 (C3 and C9), p53, serum troponin I (TI) and creatine kinase (CK), were assayed using ELISA techniques. Mitochondrial membrane permeability transition (mPT) pore opening, mitochondrial F0F1 ATPase activity, and lipid peroxidation (mLPO) were determined spectrophotometrically. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) expressions were determined using electrophoresis. CM supplementation (25 mg/kg) significantly decreased serum p53, TNF-α, CRP and IL-6 compared with MF. In the resistant model, CM prevented mPT pore opening, significantly decreased F0F1 ATPase activity and mLPO. MF activated caspase-3 while supplementation with CM significantly decreased this effect. Furthermore, MMP-2 and MMP-9 were selectively expressed in the susceptible model. Malarial treatment with mefloquine elicits different cell death responses while supplementation with curcumin decreased TI level and CK activities.


Assuntos
Antiprotozoários/uso terapêutico , Curcumina/uso terapêutico , Malária/tratamento farmacológico , Mefloquina/uso terapêutico , Adenosina Trifosfatases/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Cloroquina/uso terapêutico , Curcumina/farmacologia , Citocinas/imunologia , Resistência a Medicamentos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Miocárdio/metabolismo , Plasmodium berghei
6.
J Ethnopharmacol ; 279: 114390, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34224812

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Raffia palm (Raphia hookeri G. Mann & H. Wendl) wine (RPW) is a natural beverage obtained from the R. hookeri consumed for refreshment and medicinal purposes. For medicinal purposes, it is used singly or as macerating agent for other medicinal plants for the treatment of several diseases. AIM: This study investigates the effect of Raffia palm wine on dysregulated lipid metabolic pathways in testicular tissues of type 2 diabetic (T2D) rats. METHODS: Raffia palm wine (150 and 300 mg/kg bodyweight) was administered to two T2D groups respectively, another T2D group was not administered treatment and served as negative control, while metformin served as the standard drug. After 6 weeks of treatment, the rats were sacrificed, and the testes collected. After weighing, the organs were homogenized in 20% methanol/ethanol and centrifuged at 20,000 g to extract the lipid metabolites. RESULTS: GC-MS analysis of the supernatants revealed an alteration of the metabolites on induction of T2D, with concomitant generation of 10 metabolites. Raffia palm wine inhibited the T2D-generated metabolites while replenishing cholesterol and squalene levels, with concomitant generation of 7 and 8 metabolites for low and high dose treatment respectively. Pathway enrichment analysis of the metabolites revealed a decreased level of steroid biosynthesis and increased level of fatty acid biosynthesis. Raffia palm wine inactivated glycerolipid, fatty acid, and arachidonic acid metabolisms, fatty acid biosynthesis and fatty acid elongation in mitochondria pathways, and activated pathways for plasmalogen synthesis, mitochondrial beta-oxidation of long chain saturated fatty acids. CONCLUSION: The replenishment and generation of these metabolites and additional ones as well as activation of pathways involved in energy generation, phospholipids, antioxidant activity, steroidogenesis and spermatogenesis suggest a therapeutic effect of Raffia palm wine against hyperglycemic-induced testicular dysfunction.


Assuntos
Bebidas Alcoólicas , Columbiformes , Diabetes Mellitus Experimental/complicações , Metabolismo dos Lipídeos/efeitos dos fármacos , Testículo/efeitos dos fármacos , Animais , Cromatografia Gasosa-Espectrometria de Massas , Hipoglicemiantes/uso terapêutico , Masculino , Metformina/uso terapêutico , Ratos , Doenças Testiculares/tratamento farmacológico , Doenças Testiculares/etiologia , Testículo/metabolismo
7.
Food Chem Toxicol ; 154: 112335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129900

RESUMO

This study investigated the therapeutic mechanism of Cola nitida seeds on diabetic cardiomyopathy in hearts of diabetic rats. Type 2 diabetic (T2D) rats were treated with C. nitida infusion at 150 or 300 mg/kg body weight (bw). The rats were sacrificed after 6 weeks of treatment, and their hearts harvested. There was an upsurge in oxidative stress on induction of T2D as depicted by the depleted levels of glutathione, superoxide dismutase and catalase activities, and elevated malondialdehyde level. The activities of acetylcholinesterase, and ATPase were significantly elevated, with suppressed ENTPDase and 5'nucleotodase activities in hearts of T2D rats depicting cholinergic and purinergic dysfunctions. Induction of T2D further led to elevated activity of ACE and altered myocardial morphology. Treatment with C. nitida infusion led to reversal of these biomarkers' activities and levels, while maintaining an intact morphology. The infusion caused decreased lipase activity and depletion of diabetes-generated cardiac lipid metabolites, while concomitantly generating saturated and unsaturated fatty acids, fatty esters and alcohols. There was also an inactivation of plasmalogen synthesis and mitochondrial beta-oxidation of long chain saturated fatty acids pathways in T2D rats treated with C. nitida infusion. These results indicate the therapeutic effect of C. nitida infusion against diabetic cardiomyopathy.


Assuntos
Cardiotônicos/uso terapêutico , Cola/química , Cardiomiopatias Diabéticas/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Enzimas/metabolismo , Coração/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley , Sementes/química
8.
Amino Acids ; 53(7): 1135-1151, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34152488

RESUMO

The antidiabetic effect of l-leucine has been attributed to its modulatory effect on glucose uptake and lipid metabolism in muscles. However, there is a dearth on its effect on glucose metabolism in muscles. Thus, the present study investigated the effect of l-leucine - stimulated glucose uptake on glucose metabolism, dysregulated lipid metabolic pathways, redox and bioenergetic homeostasis, and proteolysis in isolated psoas muscle from Sprague Dawley male rats. Isolated psoas muscles were incubated with l-leucine (30-240 µg/mL) in the presence of 11.1 mMol glucose at 37 ˚C for 2 h. Muscles incubated in only glucose served as the control, while muscles not incubated in l-leucine and/or glucose served as the normal control. Metformin (6.04 mM) was used as the standard antidiabetic drug. Incubation with l-leucine caused a significant increase in muscle glucose uptake, with an elevation of glutathione levels, superoxide dismutase, catalase, E-NTPDase and 5'nucleotidase activities. It also led to the depletion of malondialdehyde and nitric oxide levels, ATPase, chymotrypsin, acetylcholinesterase, glycogen phosphorylase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and lipase activities. There was an alteration in lipid metabolites, with concomitant activation of glycerolipid metabolism, fatty acid metabolism, and fatty acid elongation in mitochondria in the glucose-incubated muscle (negative control). Incubation with l-leucine reversed these alterations, and concomitantly deactivated the pathways. These results indicate that l-leucine-enhanced muscle glucose uptake involves improved redox and bioenergetic homeostasis, with concomitant suppressed proteolytic, glycogenolytic and gluconeogenetic activities, while modulating glucose - lipid metabolic switch.


Assuntos
Antioxidantes/farmacologia , Metabolismo Energético , Glucose/metabolismo , Homeostase , Leucina/farmacologia , Metabolismo dos Lipídeos , Músculos Psoas/metabolismo , Animais , Masculino , Oxirredução , Estresse Oxidativo , Músculos Psoas/efeitos dos fármacos , Músculos Psoas/patologia , Ratos , Ratos Sprague-Dawley
9.
Front Pharmacol ; 12: 610835, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093172

RESUMO

Cardiotoxicity leading to cardiovascular dysfunction and ultimately cardiac failure remains a major global health issue irrespective of race, age and country. Several factors including lipotoxicity, oxidative imbalance, exacerbated angiotensin-converting enzyme (ACE) activity and altered bioenergetics have been implicated in the pathophysiology of cardiovascular diseases. Turbina oblongata (E. Mey. ex Choisy) A. Meeuse is among the medicinal plants commonly used traditionally in the treatment and management of various ailments including cardiovascular dysfunctions in South Africa. In the present study, T. oblongata was investigated for its cardioprotective mechanism on oxidative-mediated cardiotoxicity by determining its effect on redox imbalance, purinergic and cholinergic dysfunction, and ACE activity as well as lipid dysmetabolism and pathways in iron-induced oxidative cardiac injury. Oxidative injury was induced ex vivo in freshly isolated heart by incubating with 0.1 mM FeSO4. Treatment was done by co-incubating with T. oblongata extract or gallic acid which served as the standard antioxidant. Induction of oxidative cardiac injury led to significant depleted levels of glutathione, triglyceride, HDL-cholesterol, superoxide, catalase and ENTPDase activities, with concomitant elevated levels of malondialdehyde, cholesterol, LDL-cholesterol, ACE, acetylcholinesterase, ATPase and lipase activities. These levels and activities were significantly reversed following treatment with T. oblongata. Induction of oxidative injury also caused alterations in lipid metabolites, with concomitant activation of beta oxidation of very long chain fatty acids, plasmalogen synthesis and mitochondrial beta-oxidation of long chain saturated fatty acids pathways. Some of the altered metabolites were restored following treatment with T. oblongata, with concomitant inactivation of beta oxidation of very long chain fatty acid pathway. These results indicate the cardioprotective effect of T. oblongata against oxidative-mediated cardiotoxicity. This is evidenced by its ability to mitigate lipotoxicity and modulate dysregulated cardiometabolic activities as portrayed by its antioxidative activity and suppressive effects on ACE, acetylcholinesterase and lipase activities, while modulating cardiac lipid dysmetabolism.

10.
Amino Acids ; 53(3): 359-380, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586041

RESUMO

The antioxidant and anti-proinflammatory activities of L-leucine were investigated on oxidative testicular injury, ex vivo. In vitro analysis revealed L-leucine to be a potent scavenger of free radicals, while inhibiting acetylcholinesterase activity. Oxidative injury was induced in testicular tissues using FeSO4. Treatment with L-leucine led to depletion of oxidative-induced elevated levels of NO, MDA, and myeloperoxidase activity, with concomitant elevation of reduced glutathione and non-protein thiol levels, SOD and catalase activities. L-leucine caused a significant (p < 0.05) alteration of oxidative-elevated acetylcholinesterase and chymotrypsin activities, while concomitantly elevating the activities of ATPase, ENTPDase and 5'-nucleotidase. L-leucine conferred a protective effect against oxidative induced DNA damage. Molecular docking revealed molecular interactions with COX-2, IL-1 beta and iNOS. Treatment with L-leucine led to restoration of oxidative depleted ascorbic acid-2-sulfate, with concomitant depletion of the oxidative induced metabolites: D-4-Hydroxy-2-oxoglutarate, L-cystine, adenosine triphosphate, maleylacetoacetic acid, cholesteryl ester, and 6-Hydroxy flavin adenine dinucleotide. Treatment with L-leucine reactivated glycolysis while concomitantly deactivating oxidative-induced citrate cycle and increasing the impact-fold of purine metabolism pathway. L-leucine was predicted not to be an inhibitor of CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, with a predicted LD50 value of 5000 mg/Kg and toxicity class of 5. Additionally, L-leucine showed little or no in vitro cytotoxicity in mammalian cells. These results suggest the therapeutic potentials of L-leucine on oxidative testicular injury, as evident by its ability to attenuate oxidative stress and proinflammation, while stalling cholinergic dysfunction and modulating nucleotide hyrolysis; as well as modulate oxidative dysregulated metabolites and their pathways.


Assuntos
Colinérgicos/metabolismo , Leucina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Purinérgicos/metabolismo , Testículo/lesões , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colinérgicos/química , Dano ao DNA/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Humanos , Leucina/química , Masculino , Simulação de Acoplamento Molecular , Ratos , Testículo/metabolismo
11.
J Food Biochem ; 45(3): e13586, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326625

RESUMO

The present study investigates the cytotoxic effect of the chemical fractions of Allium cepa (yellow variety) on Human Embryonic Kidney (HEK293) cells. Allium cepa was blended into paste and macerated in distilled water before subjecting to liquid-liquid fractionation, yielding the dichloromethane, ethyl acetate (EtOAc), butanol, and aqueous fractions. Their cytotoxicity on HEK293 cells were evaluated via MTT assay. The cytotoxic fraction (EtOAc) was further evaluated for its oxidative, pro-inflammatory, and apoptotic effects on the cells. The incubation of cells with EtOAc led to depleted level of GSH, SOD, and catalase activities, and elevated levels of malondialdehyde, nitric oxide, and myeloperoxidase as well as apoptotic activities. GC-MS analysis of EtOAc revealed allyl ionone, pentadecanoic acid, and phytol acetate as the predominant fatty acids, while ergost-7-en-3ß-ol, campesterol, cycloartenol-3ß acetate, sitosterol, and fucosterol as the predominant sterols. These results portray the cytotoxic effect of the EtOAc fraction of A. cepa on HEK293 cells. PRACTICAL APPLICATIONS: There have been increasing concerns in the toxicity and safety of foods. Allium cepa (onions) is among the common globally grown and consumed plant food. This study investigated its cytotoxic effect on normal Human Embryonic Kidney (HEK293) Cells. Although only the ethyl acetate fraction was cytotoxic against the cell line, it, however, portrays a need for caution in its usage.


Assuntos
Cebolas , Esteróis , Células HEK293 , Humanos , Rim , Compostos Fitoquímicos/farmacologia
12.
Mol Divers ; 25(1): 191-204, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32086698

RESUMO

A library of pyrazole-thiazolidinone conjugates was synthesized using a molecular hybridization approach through a Vilsmeier-Haack reaction. The compounds were tested for anti-microbial activity against two Gram-positive bacteria (Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) and four Gram-negative bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia and Pseudomonas aeruginosa). Among the compounds tested, 3-((2,4-dichlorophenyl)-1-(2,4-dinitrophenyl)-1H-pyrazol-yl)methylene)hydrazinecarbothioamide (3a) and 2-((3-(2-chlorophenyl)-1-(2,4 dinitrophenyl)-1H-pyrazol-4-yl)methyleneamino)thiazolidin-4-one (4b) emerged as the most potent anti-microbial compounds with minimum bactericidal concentrations of < 0.2 µM against MRSA and S. aureus. Structure-activity relationship analysis further revealed that the presence of 2,4-dichloro moiety surprisingly influenced the activity of the compounds. Molecular docking studies of the compounds into the crystal structure of topoisomerase II and topoisomerase IV suggest that compounds 3a and 4b preferably interact with the targets through hydrogen bonding.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirazóis/química , Pirazóis/farmacologia , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hidrazinas/química , Testes de Sensibilidade Microbiana/métodos , Simulação de Acoplamento Molecular/métodos , Relação Estrutura-Atividade , Tioamidas/química
13.
J Food Biochem ; 45(1): e13576, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270256

RESUMO

The infusion of Chrysophyllum albidum was investigated for its antidiabetic mechanism by studying its ability to promote glucose uptake and utilization as well as its modulatory effect on metabolic activities linked to type 2 diabetes in isolated psoas muscle. Isolated psoas muscle was incubated with different concentrations of the infusion in the presence of glucose at 37°C for 2 hr. The infusion improved muscle glucose uptake, with concomitant elevated muscular levels of glutathione, superoxide dismutase, catalase, and ectonucleotidase activities, while depleting malondialdehyde, nitric oxide, adenosine triphosphatase, acetylcholinesterase, glycogen phosphorylase, glucose 6-phosphatase, fructose-1,6-biphosphatase, and lipase activities. It also maintained muscular morphology, while increasing magnesium, calcium, and iron levels. The infusion inhibited α-glucosidase and α-amylase activities in vitro. LC-MS analysis of the infusion revealed the presence of phenolics. These results indicate that C. albidum may mediate antidiabetic activities by stimulating muscle glucose uptake and modulation of key metabolisms linked to diabetes. PRACTICAL APPLICATIONS: The African star apple is among the underutilized fruits consumed for nutritional and medicinal purposes in Western Africa. The fruits are usually wasted during its season leading to postharvest loss owing to poor utilization. The present study gives credence to its use in treating diabetes and its complications. Thus, the fruits can be utilized in the development of cheap and affordable nutraceuticals for the management of diabetes which has been reported for its high-cost treatment. Utilization of the fruits will also reduce its postharvest loss and improve its economic values.


Assuntos
Diabetes Mellitus Tipo 2 , Malus , Sapotaceae , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Extratos Vegetais/farmacologia , Músculos Psoas , Ratos
14.
Artigo em Inglês | MEDLINE | ID: mdl-32600241

RESUMO

BACKGROUND: The therapeutic effect of Cola nitida hot infusion against diabetes hepatic injury was investigated in livers of diabetic rats. Cola nitida was infused in boiling water and concentrated. METHODS: The concentrated infusion was administered to T2D rats at low and high doses (150 and 300 mg/kg body weight (bw), respectively). The normal group (positive control) and another diabetic group (negative control) were administered distilled water, while metformin served as the standard drug. A toxic group that consists of normal rats administered a high dose of C. nitida. After 6 weeks, the rats were sacrificed, and their livers were collected. They were assayed for oxidative stress markers, myeloperoxidase, acetylcholinesterase and ATPase activities. Hepatic lipid metabolites were profiled with GC-MS and their metabolic pathways were analyzed using the MetaboAnalyst 4.0 online server. RESULTS: Treatment with C. nitida caused a significant elevation of glutathione level and SOD activity, while concomitantly inhibiting lipid peroxidation, myeloperoxidase, acetylcholinesterase and ATPase activities in hepatic tissues of the rats. Treatment with C. nitida also caused significant depletion of diabetes-generated lipid metabolites, with concomitant generation of fatty esters and steroids as well as inactivation of diabetes-activated pathways. CONCLUSION: These data demonstrate the therapeutic effect of C. nitida against diabetic hepatotoxicity in diabetic rats.


Assuntos
Antioxidantes/uso terapêutico , Cola , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos/fisiologia , Hepatopatias/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
15.
J Food Sci Technol ; 57(12): 4345-4354, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33087948

RESUMO

The comparative phytochemicals, antioxidative and antidiabetic activities of Camellia sinensis (black tea) and Aspalathus linearis (rooibos tea) were studied in vitro and ex vivo. Concentrated infusions of the teas showed significant free radical scavenging activities in vitro. They significantly increased the glutathione level, superoxide dismutase and catalase enzyme activities in oxidative hepatic injury, while concomitantly depleting malondialdehyde level. The teas significantly inhibited intestinal glucose absorption and α-amylase activities, and elevated muscle glucose uptake. LCMS phytochemical profiling revealed the presence of hydroxycaffeic acid, l-threonate, caffeine, vanillic acid, n-acetylvaline, and spinacetin 3-glucoside in C. sinensis. While quinolinic acid, coumestrol, phloroglucinol, 8-hydroxyquercetagetin, umbelliferone, and ajoene were identified in A. linearis. These results portray the antioxidant and antidiabetic potencies of both teas, with A. linearis showed better activity compared to C. sinensis. These teas may thus be used as functional foods in the management of diabetes and other oxidative stress related metabolic disorders.

17.
J Food Biochem ; 44(11): e13478, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32984977

RESUMO

The antioxidant, antidiabetic, and anti-obesogenic potentials of different extracts (dichloromethane, ethyl acetate, ethanol, and aqueous) of the red honeybush (Cyclopia genistoides) tea were investigated in vitro and ex vivo. All extracts exhibited significant scavenging and reducing power activities, with the aqueous and ethyl acetate extracts being the most potent. In vitro antidiabetic analysis revealed the extracts to be potent inhibitors of α-glucosidase and lipase activities. All extracts increased catalase and SOD activities, and glutathione level in oxidative pancreatic injury. GC-MS analysis revealed the presence of fatty acids, fatty acid ester, phytols, sterols, saccharide, ketones, and triterpenes. These results imply that the sequential extracts of honeybush tea (particularly the aqueous and ethyl acetate extracts) may not only exhibit antioxidant potentials but also mediate anti-hyperglycemia activities by inhibiting lipid and carbohydrate digestion. PRACTICAL APPLICATIONS: Red honeybush tea is enjoyed widely in South Africa and around the world due to its no caffeine and very low tannin content, as well as many healthcare attributes. There are however no scientific reports for its sequential extraction of different solvents on antidiabetic effects. The different extracts of honeybush tea (particularly the aqueous and ethyl acetate extracts) inhibited lipid and carbohydrate digestive enzymes linked to type 2 diabetes (T2D), as well as modulate oxidative pancreatic injury. These findings will promote its utilization as a potential nutraceutical in the management of diabetes and its complications.


Assuntos
Antioxidantes , Diabetes Mellitus Tipo 2 , Antioxidantes/farmacologia , Holoprosencefalia , Humanos , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Chá
18.
Metab Brain Dis ; 35(8): 1417-1428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32990928

RESUMO

Caseins are the most abundant milk proteins in mammalian species and are assembled in supra-macromolecular structures called micelles. In this study, the microstructural properties, particle size, and elemental composition of isolated casein from bovine milk and its therapeutic effect on oxidative and cholinergic activities linked to dementia in oxidative brain injury were investigated. SEM analysis of the isolated casein micelles from skimmed fresh bovine milk revealed spherical colloid aggregates, while TEM analysis revealed dispersed spherical particles with a mean size of 63.15 ± 4.77 nm. SEM-EDX analysis revealed clusters of carbon, oxygen, sulfur, copper, sodium, magnesium, potassium, iron, and selenium. Treatment of oxidative brain injury with the isolated casein micelles led to elevated levels of GSH, SOD, catalase, ENTPDase, 5'NTPase activities, while concomitantly suppressing MDA, cholesterol, HDL-c levels, acetylcholinesterase and lipase activities. Treatment with the isolated casein micelles led to complete depletion of oxidative generated lipid metabolites, while deactivating oxidative-activated lipid metabolic pathways. These results indicate the microstructural properties, particle size, elemental composition, and antioxidant neuroprotective effect of casein micelles from bovine milk. Thus, demonstrating the nutraceutical properties of milk in the management of oxidative induced cognitive impairment.


Assuntos
Lesões Encefálicas/metabolismo , Caseínas/administração & dosagem , Micelas , Leite/metabolismo , Neuroproteção/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Lesões Encefálicas/tratamento farmacológico , Caseínas/isolamento & purificação , Bovinos , Relação Dose-Resposta a Droga , Masculino , Leite/química , Neuroproteção/fisiologia , Estresse Oxidativo/fisiologia , Tamanho da Partícula , Ratos
19.
Neurochem Int ; 140: 104849, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32927025

RESUMO

The present study investigated the effect of raffia palm (Raphia hookeri) wine (RPW) on hyperglycemia-mediated lipid metabolites and pathways, functional chemistry and ultrastructural morphology of cerebellums in type 2 diabetes (T2D). T2D was induced in male Sprague-Dawley rats by feeding with 10% fructose ad libitum for 2 weeks before injecting intraperitoneally with 40 mg/kg bodyweight (bw) streptozotocin. Following confirmation of hyperglycemia at blood glucose >200 mg/dL, diabetic rats were treated with RPW at 150 and 300 mg/kg bw respectively. Metformin served as the standard drug. Negative and normal controls consisted of untreated diabetic and non-diabetic rats, respectively. After 5 weeks of treatment, the rats were humanely sacrificed, and their cerebellum excised from the harvested brains. GC-MS analysis revealed significant alterations in cerebellar lipid metabolites depicted by changes in unsaturated and saturated fatty acids, fatty - esters, alcohols, and amides, glycols and steroids on induction of T2D. Pathway enrichment analysis of the lipid metabolites revealed inactivation of arachidonic metabolic pathway following T2D induction. Treatment with both doses of RPW restored most of the metabolites, while reactivating arachidonic acid metabolism (high dose only). Low dose of RPW led to the activation of retinol metabolism. Both doses of RPW maintained cerebellar functional chemistry as revealed by FTIR analysis. TEM analysis revealed swollen mitochondria, depleted numbers of synaptic vesicles, and shrunk synaptic clefts following induction of T2D. These ultrastructural morphologies were improved in RPW-treated rats. These results portray the therapeutic potential of raffia palm wine in the management of neurodegenerative complications in T2D.


Assuntos
Cerebelo/metabolismo , Cerebelo/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Metabolismo dos Lipídeos/fisiologia , Extratos Vegetais/uso terapêutico , Vinho , Animais , Cerebelo/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Hiperglicemia/tratamento farmacológico , Hiperglicemia/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley
20.
J Pharm Pharmacol ; 72(12): 1787-1797, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902887

RESUMO

OBJECTIVES: This study was aimed at investigating neuroprotective effect of catechol on redox imbalance, cholinergic dysfunctions, nucleotide hydrolysing enzymes activities, and dysregulated metabolic pathways in iron-mediated oxidative brain injury. METHODS: Oxidative injury was induced in brain tissues by incubating with 0.1 mm FeSO4 and treated with different concentrations of catechol. KEY FINDINGS: Catechol significantly elevated glutathione level, superoxide dismutase and catalase activities, while depleting malondialdehyde and nitric oxide levels. It also inhibited the activities of acetylcholinesterase, butyrylcholinesterase, and ATPase, with concomitant elevation of ENTPDase activity. GC-MS analysis revealed that treatment with catechol completely depleted oxidative-generated lipid metabolites. While LC-MS analysis revealed depletion of oxidative-generated metabolites in brain tissues treated with catechol, with concomitant restoration of oxidative-depleted metabolites. Catechol also led to reactivation of oxidative-inactivated taurine and hypotaurine, purine, glutathione, glycerophospholipid, nicotinate and nicotinamide, fructose and mannose, pyrimidine metabolisms and pentose phosphate pathways. Catechol was predicted in silico to be permeable across the blood-brain barrier with a predicted oral LD50 value of 100 mg/kg and a toxicity class of 3. CONCLUSION: These results suggest the neuroprotective effects of catechol in iron-mediated oxidative brain injury.


Assuntos
Acetilcolina/metabolismo , Antioxidantes/farmacologia , Encefalopatias/prevenção & controle , Encéfalo/efeitos dos fármacos , Catecóis/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Purinas/metabolismo , Acetilcolinesterase/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/patologia , Encefalopatias/induzido quimicamente , Encefalopatias/enzimologia , Encefalopatias/patologia , Butirilcolinesterase/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Compostos Ferrosos , Proteínas Ligadas por GPI/metabolismo , Hidrólise , Masculino , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA