Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
Biochem Pharmacol ; 221: 116042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325495

RESUMO

Fibroblast growth factor 21 (FGF21) reduces body weight, which was attributed to induced energy expenditure (EE). Conflicting data have been published on the role of uncoupling protein 1 (UCP1) in this effect. Therefore, we aimed to revisit the thermoregulatory effects of FGF21 and their implications for body weight regulation. We found that an 8-day treatment with FGF21 lowers body weight to similar extent in both wildtype (WT) and UCP1-deficient (KO) mice fed high-fat diet. In WT mice, this effect is solely due to increased EE, associated with a strong activation of UCP1 and with excess heat dissipated through the tail. This thermogenesis takes place in the interscapular region and can be attenuated by a ß-adrenergic inhibitor propranolol. In KO mice, FGF21-induced weight loss correlates with a modest increase in EE, which is independent of adrenergic signaling, and with a reduced energy intake. Interestingly, the gene expression profile of interscapular brown adipose tissue (but not subcutaneous white adipose tissue) of KO mice is massively affected by FGF21, as shown by increased expression of genes encoding triacylglycerol/free fatty acid cycle enzymes. Thus, FGF21 elicits central thermogenic and pyretic effects followed by a concomitant increase in EE and body temperature, respectively. The associated weight loss is strongly dependent on UCP1-based thermogenesis. However, in the absence of UCP1, alternative mechanisms of energy dissipation may contribute, possibly based on futile triacylglycerol/free fatty acid cycling in brown adipose tissue and reduced food intake.


Assuntos
Ácidos Graxos não Esterificados , Fatores de Crescimento de Fibroblastos , Redução de Peso , Animais , Camundongos , Camundongos Obesos , Proteína Desacopladora 1/genética , Peso Corporal , Metabolismo Energético , Adrenérgicos , Triglicerídeos
2.
Nephron ; 148(2): 78-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37883937

RESUMO

BACKGROUND: Beta cells play a key role in the pathophysiology of diabetes since their functional adaptation is able to maintain euglycemia in the face of insulin resistance, and beta cell decompensation or dysfunction is a necessary condition for full-blown type 2 diabetes (T2D). The mechanisms behind compensation and decompensation are incompletely understood, especially for human beta cells, and even less is known about influences of chronic kidney disease (CKD) or immunosupressive therapy after transplantation on these processes and the development of posttransplant diabetes. SUMMARY: During compensation, beta cell sensitivity to glucose becomes left-shifted, i.e., their sensitivity to stimulation increases, and this is accompanied by enhanced signals along the stimulus-secretion coupling cascade from membrane depolarization to intracellular calcium and the most distal insulin secretion dynamics. There is currently no clear evidence regarding changes in intercellular coupling during this stage of disease progression. During decompensation, intracellular stimulus-secretion coupling remains enhanced to some extent at low or basal glucose concentrations but seems to become unable to generate effective signals to stimulate insulin secretion at high or otherwise stimulatory glucose concentrations. Additionally, intercellular coupling becomes disrupted, lowering the number of cells that contribute to secretion. During progression of CKD, beta cells also seem to drift from a compensatory left-shift to failure, and immunosupressants can further impair beta cell function following kidney transplantation. KEY MESSAGES: Beta cell stimulus-secretion coupling is enhanced in compensated insulin resistance. With worsening insulin resistance, both intra- and intercellular coupling become disrupted. CKD can progressively disrupt beta cell function, but further studies are needed, especially regarding changes in intercellular coupling.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insuficiência Renal Crônica , Humanos , Resistência à Insulina/fisiologia , Insulina/metabolismo , Glucose/metabolismo
3.
Environ Pollut ; 342: 122862, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040181

RESUMO

Thallium (Tl) is a highly toxic trace metal, included in the US EPA list of priority pollutants. Even though its toxicity is potentially higher or comparable to Cd or Hg, its environmental impact is largely unknown. Despite its toxicity, only a few recent studies are mapping the impact of recently introduced Tl on soil microbial communities, namely in agricultural systems but no studies focus on its long term effect. To complement the understanding of the impact of Tl on soil, this study aims to describe the influence of extremely high naturally occurring Tl concentration (50 mg/kg of potentially bioavailable Tl) on soil microbial communities. Our investigation concentrated on samples collected at Buus (Erzmatt, Swiss Jura, Switzerland), encompassing forest and meadow soil profiles of the local soil formed on hydrothermally mineralized dolomite rock, which is naturally rich in Tl. The soil profiles showed a significant proportion of potentially bioavailable Tl. Yet, even this high concentration of Tl has a limited impact on the richness of the soil bacterial community. Only the meadow soil samples show a reduced richness compared to control samples. Furthermore, our analysis of geogenic Tl contamination in the region unveiled a surprising finding: compared to other soils of Switzerland and in stark contrast to soils affected by recent mining activities, the structure of the bacterial community in Buus remained relatively unaffected. This observation highlights the unique ability of soil microbial communities to withstand extreme Tl contamination. Our study advances the understanding of Tl's environmental impact and underscores the resilience of soil microbes in the face of severe long-term contamination.


Assuntos
Mercúrio , Poluentes do Solo , Oligoelementos , Tálio/análise , Solo/química , Bactérias , Mercúrio/análise , Oligoelementos/análise , Poluentes do Solo/análise , Monitoramento Ambiental , China
4.
Ticks Tick Borne Dis ; 15(1): 102269, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813002

RESUMO

Viral infection may represent a stress condition to the host cell. Cells react to it by triggering the defence programme to restore homeostasis and these events may in turn impact the viral replication. The knowledge about tick-borne encephalitis virus (TBEV) infection-associated stress is limited. Here we investigated the interplay between TBEV infection and stress pathways in PMJ2-R mouse macrophage cell line, as macrophages are the target cells in early phases of TBEV infection. First, to determine how stress influences TBEV replication, the effect of stress inducers H2O2 and tunicamycin (TM) was tested. Viral multiplication was decreased in the presence of both stress inducers suggesting that the stress and cellular stress responses restrict the virus replication. Second, we investigated the induction of oxidative stress and endoplasmic reticulum (ER) stress upon TBEV infection. The level of oxidative stress was interrogated by measuring the reactive oxygen species (ROS). ROS were intermittently increased in infected cells at 12 hpi and at 72 hpi. As mitochondrial dysfunction may result in increased ROS level, we evaluated the mitochondrial homeostasis by measuring the mitochondrial membrane potential (MMP) and found that TBEV infection induced the hyperpolarization of MMP. Moreover, a transient increase of gene expression of stress-induced antioxidative enzymes, like p62, Gclm and Hmox1, was detected. Next, we evaluated the ER stress upon TBEV infection by analysing unfolded protein responses (UPR). We found that infection induced gene expression of two general sensors BiP and CHOP and activated the IRE1 pathway of UPR. Finally, since the natural transmission route of TBEV from its tick vector to the host is mediated via tick saliva, the impact of tick saliva from Ixodes ricinus on stress pathways in TBEV-infected cells was tested. We observed only marginal potentiation of UPR pathway. In conclusion, we found that TBEV infection of PMJ2-R cells elicits the changes in redox balance and triggers cellular stress defences, including antioxidant responses and the IRE1 pathway of UPR. Importantly, our results revealed the negative effect of stress-evoked events on TBEV replication and only marginal impact of tick saliva on stress cellular pathways.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Camundongos , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Proteínas Serina-Treonina Quinases/metabolismo , Replicação Viral
5.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37935470

RESUMO

Soil environments are inhabited by microorganisms adapted to its diversified microhabitats. The metabolic activity of individual strains/populations reflects resources available at a particular spot, quality of which may not comply with broad soil characteristics. To explore the potential of individual strains to adapt to particular micro-niches of carbon sources, a set of 331 Actinomycetia strains were collected at ten sites differing in vegetation, soil pH, organic matter content and quality. The strains were isolated on the same complex medium with neutral pH and their metabolites analyzed by UHPLC and LC-MS/MS in spent cultivation medium (metabolic profiles). For all strains, their metabolic profiles correlated with soil pH and organic matter content of the original sites. In comparison, strains phylogeny based on either 16S rRNA or the beta-subunit of DNA-dependent RNA polymerase (rpoB) genes was partially correlated with soil organic matter content but not soil pH at the sites. Antimicrobial activities of strains against Kocuria rhizophila, Escherichia coli, and Saccharomyces cerevisiae were both site- and phylogeny-dependent. The precise adaptation of metabolic profiles to overall sites characteristics was further supported by the production of locally specific bioactive metabolites and suggested that carbon resources represent a significant selection pressure connected to specific antibiotic activities.


Assuntos
Actinobacteria , Solo/química , Actinomyces , RNA Ribossômico 16S/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Filogenia , Carbono/metabolismo , Microbiologia do Solo
6.
Commun Biol ; 6(1): 1043, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37833362

RESUMO

Obesity adversely affects bone and fat metabolism in mice and humans. Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) have been shown to improve glucose metabolism and bone homeostasis in obesity. However, the impact of omega-3 PUFAs on bone marrow adipose tissue (BMAT) and bone marrow stromal cell (BMSC) metabolism has not been intensively studied yet. In the present study we demonstrated that omega-3 PUFA supplementation in high fat diet (HFD + F) improved bone parameters, mechanical properties along with decreased BMAT in obese mice when compared to the HFD group. Primary BMSCs isolated from HFD + F mice showed decreased adipocyte and higher osteoblast differentiation with lower senescent phenotype along with decreased osteoclast formation suggesting improved bone marrow microenvironment promoting bone formation in mice. Thus, our study highlights the beneficial effects of omega-3 PUFA-enriched diet on bone and cellular metabolism and its potential use in the treatment of metabolic bone diseases.


Assuntos
Medula Óssea , Ácidos Graxos Ômega-3 , Humanos , Camundongos , Animais , Medula Óssea/metabolismo , Adiposidade , Osso e Ossos/metabolismo , Obesidade/complicações , Obesidade/prevenção & controle , Obesidade/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Modelos Animais de Doenças
7.
Front Pediatr ; 11: 1250731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37772038

RESUMO

Background: Physical activity (PA) provides health benefits across the lifespan and improves many established cardiovascular risk factors that have a significant impact on overall mortality. However, discrepancies between self-reported and device-based measures of PA make it difficult to obtain consistent results regarding PA and its health effects. Moreover, PA may produce different health effects depending on the type, intensity, duration, and frequency of activities and individual factors such as age, sex, body weight, early life conditions/exposures, etc. Appropriate biomarkers relating the degree of PA level with its effects on health, especially in children and adolescents, are required and missing. The main objective of the INTEGRActiv study is to identify novel useful integrative biomarkers of PA and its effects on the body health in children and adolescents, who represent an important target population to address personalized interventions to improve future metabolic health. Methods/design: The study is structured in two phases. First, biomarkers of PA and health will be identified at baseline in a core cohort of 180 volunteers, distributed into two age groups: prepubertal (n = 90), and postpubertal adolescents (n = 90). Each group will include three subgroups (n = 30) with subjects of normal weight, overweight, and obesity, respectively. Identification of new biomarkers will be achieved by combining physical measures (PA and cardiorespiratory and muscular fitness, anthropometry) and molecular measures (cardiovascular risk factors, endocrine markers, cytokines and circulating miRNA in plasma, gene expression profile in blood cells, and metabolomics profiling in plasma). In the second phase, an educational intervention and its follow-up will be carried out in a subgroup of these subjects (60 volunteers), as a first validation step of the identified biomarkers. Discussion: The INTEGRActiv study is expected to provide the definition of PA and health-related biomarkers (PA-health biomarkers) in childhood and adolescence. It will allow us to relate biomarkers to factors such as age, sex, body weight, sleep behavior, dietary factors, and pubertal status and to identify how these factors quantitatively affect the biomarkers' responses. Taken together, the INTEGRActiv study approach is expected to help monitor the efficacy of interventions aimed to improve the quality of life of children/adolescents through physical activity. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT05907785.

8.
Front Endocrinol (Lausanne) ; 14: 1205703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501785

RESUMO

Introduction: Non-alcoholic fatty liver disease (NAFLD) can progress to more severe stages, such as steatohepatitis and fibrosis. Thermoneutral housing together with high-fat diet promoted NAFLD progression in C57BL/6J mice. Due to possible differences in steatohepatitis development between different C57BL/6 substrains, we examined how thermoneutrality affects NAFLD progression in C57BL/6N mice. Methods: Male mice were fed standard or high-fat diet for 24 weeks and housed under standard (22°C) or thermoneutral (30°C) conditions. Results: High-fat feeding promoted weight gain and hepatic steatosis, but the effect of thermoneutral environment was not evident. Liver expression of inflammatory markers was increased, with a modest and inconsistent effect of thermoneutral housing; however, histological scores of inflammation and fibrosis were generally low (<1.0), regardless of ambient temperature. In standard diet-fed mice, thermoneutrality increased weight gain, adiposity, and hepatic steatosis, accompanied by elevated de novo lipogenesis and changes in liver metabolome characterized by complex decreases in phospholipids and metabolites involved in urea cycle and oxidative stress defense. Conclusion: Thermoneutrality appears to promote NAFLD-associated phenotypes depending on the C57BL/6 substrain and/or the amount of dietary fat.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Habitação , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Aumento de Peso
9.
Biofactors ; 49(5): 1022-1037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37227188

RESUMO

We aimed to evaluate whether improving maternal diet during lactation in diet-induced obese rats reverts the impact of western diet (WD) consumption on the metabolome of milk and offspring plasma, as well as to identify potential biomarkers of these conditions. Three groups of dams were followed: control-dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion-dams (REV-dams), fed as WD-dams but moved to SD during lactation. Metabolomic analysis was performed in milk at lactation days 5, 10, and 15, and in plasma from their male and female offspring at postnatal day 15. Milk of WD-dams presented, throughout lactation and compared to CON-dams, altered profiles of amino acids and of the carnitine pool, accompanied by changes in other polar metabolites, being stachydrine, N-acetylornithine, and trimethylamine N-oxide the most relevant and discriminatory metabolites between groups. The plasma metabolome profile was also altered in the offspring of WD-dams in a sex-dependent manner, and stachydrine, ergothioneine and the acylcarnitine C12:1 appeared as the top three most discriminating metabolites in both sexes. Metabolomic changes were largely normalized to control levels both in the milk of REV-dams and in the plasma of their offspring. We have identified a set of polar metabolites in maternal milk and in the plasma of the offspring whose alterations may indicate maternal intake of an unbalanced diet during gestation and lactation. Levels of these metabolites may also reflect the beneficial effects of implementing a healthier diet during lactation.


Assuntos
Lactação , Leite , Ratos , Masculino , Feminino , Animais , Leite/química , Leite/metabolismo , Dieta , Biomarcadores/metabolismo
10.
Int Immunopharmacol ; 118: 110150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37030115

RESUMO

Despite constant advances in cancer research, the treatment of pancreatic adenocarcinoma remains extremely challenging. The intratumoral immunotherapy approach that was developed by our research group and was based on a combination of mannan-BAM, TLR ligands, and anti-CD40 antibody (MBTA) showed promising therapeutic effects in various murine tumor models, including a pancreatic adenocarcinoma model (Panc02). However, the efficacy of MBTA therapy in the Panc02 model was negatively correlated with tumor size at the time of therapy initiation. Here, we aimed to further improve the outcome of MBTA therapy in the Panc02 model using the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON). The combination of intratumoral MBTA therapy and intraperitoneal administration of DON resulted in the complete elimination of advanced Panc02 subcutaneous tumors (140.8 ± 46.8 mm3) in 50% of treated animals and was followed by development of long-term immune memory. In the bilateral Panc02 subcutaneous tumor model, we observed a significant reduction in tumor growth in both tumors as well as prolonged survival of treated animals. The appropriate timing and method of administration of DON were also addressed to maximize its therapeutic effects and minimize its side effects. In summary, our findings demonstrate that the intraperitoneal application of DON significantly improves the efficacy of intratumoral MBTA therapy in both advanced and bilateral Panc02 subcutaneous tumor murine models.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Animais , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Glutamina/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Imunoterapia/métodos , Linhagem Celular Tumoral , Neoplasias Pancreáticas
11.
BMC Neurol ; 23(1): 76, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36803465

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. Despite the best available treatment, prognosis remains poor. Current standard therapy consists of surgical removal of the tumor followed by radiotherapy and chemotherapy with the alkylating agent temozolomide (TMZ). Experimental studies suggest that antisecretory factor (AF), an endogenous protein with proposed antisecretory and anti-inflammatory properties, may potentiate the effect of TMZ and alleviate cerebral edema. Salovum is an egg yolk powder enriched for AF and is classified as a medical food in the European Union. In this pilot study, we evaluate the safety and feasibility of add-on Salovum in GBM patients. METHODS: Eight patients with newly diagnosed, histologically confirmed GBM were prescribed Salovum during concomitant radiochemotherapy. Safety was determined by the number of treatment-related adverse events. Feasibility was determined by the number of patients who completed the full prescribed Salovum treatment. RESULTS: No serious treatment-related adverse events were observed. Out of 8 included patients, 2 did not complete the full treatment. Only one of the dropouts was due to issues directly related to Salovum, which were nausea and loss of appetite. Median survival was 23 months. CONCLUSIONS: We conclude that Salovum is safe to use as an add-on treatment for GBM. In terms of feasibility, adherence to the treatment regimen requires a determined and independent patient as the large doses prescribed may cause nausea and loss of appetite. TRIAL REGISTRATION: ClinicalTrials.gov NCT04116138. Registered on 04/10/2019.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Projetos Piloto , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Antineoplásicos Alquilantes/uso terapêutico
12.
Mol Metab ; 69: 101683, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36720306

RESUMO

OBJECTIVE: Non-shivering thermogenesis (NST) mediated by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) can be activated via the adrenergic system in response to cold or diet, contributing to both thermal and energy homeostasis. Other mechanisms, including metabolism of skeletal muscle, may also be involved in NST. However, relative contribution of these energy dissipating pathways and their adaptability remain a matter of long-standing controversy. METHODS: We used warm-acclimated (30 °C) mice to characterize the effect of an up to 7-day cold acclimation (6 °C; CA) on thermoregulatory thermogenesis, comparing inbred mice with a genetic background conferring resistance (A/J) or susceptibility (C57BL/6 J) to obesity. RESULTS: Both warm-acclimated C57BL/6 J and A/J mice exhibited similar cold endurance, assessed as a capability to maintain core body temperature during acute exposure to cold, which improved in response to CA, resulting in comparable cold endurance and similar induction of UCP1 protein in BAT of mice of both genotypes. Despite this, adrenergic NST in BAT was induced only in C57BL/6 J, not in A/J mice subjected to CA. Cold tolerance phenotype of A/J mice subjected to CA was not based on increased shivering, improved insulation, or changes in physical activity. On the contrary, lipidomic, proteomic and gene expression analyses along with palmitoyl carnitine oxidation and cytochrome c oxidase activity revealed induction of lipid oxidation exclusively in skeletal muscle of A/J mice subjected to CA. These changes appear to be related to skeletal muscle NST, mediated by sarcolipin-induced uncoupling of sarco(endo)plasmic reticulum calcium ATPase pump activity and accentuated by changes in mitochondrial respiratory chain supercomplexes assembly. CONCLUSIONS: Our results suggest that NST in skeletal muscle could be adaptively augmented in the face of insufficient adrenergic NST in BAT, depending on the genetic background of the mice. It may provide both protection from cold and resistance to obesity, more effectively than BAT.


Assuntos
Tecido Adiposo Marrom , Proteômica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Camundongos Endogâmicos C57BL , Termogênese/fisiologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Camundongos Endogâmicos , Adrenérgicos/metabolismo
13.
Phytopathology ; 113(4): 741-752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36510361

RESUMO

Disease-suppressive soils encompass specific plant-pathogen-microbial interactions and represent a rare example of an agroecosystem where soil conditions and microbiome together prevent the pathogen from causing disease. Such soils have the potential to serve as a model for characterizing soil pathogen-related aspects of soil health, but the mechanisms driving the establishment of suppressive soils vary and are often poorly characterized. Yet, they can serve as a resource for identifying markers for beneficial activities of soil microorganisms concerning pathogen prevention. Many recent studies have focused on the nature of disease-suppressive soils, but it has remained difficult to predict where and when they will occur. This review outlines current knowledge on the distribution of these soils, soil manipulations leading to pathogen suppression, and markers including bacterial and fungal diversity, enzymes, and secondary metabolites. The importance to consider soil legacy in research on the principles that define suppressive soils is also highlighted. The goal is to extend the context in which we understand, study, and use disease-suppressive soils by evaluating the relationships in which they occur and function. Finally, we suggest that disease-suppressive soils are critical not only for the development of indicators of soil health, but also for the exploration of general ecological principles about the surrounding landscape, effects of deeper layers of the soil profile, little studied soil organisms, and their interactions for future use in modern agriculture.


Assuntos
Microbiologia do Solo , Solo , Objetivos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Agricultura
14.
Plants (Basel) ; 11(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36235447

RESUMO

In Mediterranean ecosystems, the projected rainfall reduction of up to 30% may alter plant-soil interactions, particularly litter decomposition and Home Field Advantage (HFA). We set up a litter transplant experiment in the three main forests encountered in the northern part of the Medi-terranean Basin (dominated by either Quercus ilex, Quercus pubescens, or Pinus halepensis) equipped with a rain exclusion device, allowing an increase in drought either throughout the year or concentrated in spring and summer. Senescent leaves and needles were collected under two precipitation treatments (natural and amplified drought plots) at their "home" forest and were left to decompose in the forest of origin and in other forests under both drought conditions. MS-based metabolomic analysis of litter extracts combined with multivariate data analysis enabled us to detect modifications in the composition of litter specialized metabolites, following amplified drought treatment. Amplified drought altered litter quality and metabolomes, directly slowed down litter decomposition, and induced a loss of home field (dis)advantage. No indirect effect mediated by a change in litter quality on decomposition was observed. These results may suggest major alterations of plant-soil interactions in Mediterranean forests under amplified drought conditions.

15.
Mol Metab ; 65: 101598, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36103974

RESUMO

OBJECTIVE: The use of thiazolidinediones (TZDs) as insulin sensitizers has been shown to have side effects including increased accumulation of bone marrow adipocytes (BMAds) associated with a higher fracture risk and bone loss. A novel TZD analog MSDC-0602K with low affinity to PPARγ has been developed to reduce adverse effects of TZD therapy. However, the effect of MSDC-0602K on bone phenotype and bone marrow mesenchymal stem cells (BM-MSCs) in relation to obesity has not been intensively studied yet. METHODS: Here, we investigated whether 8-week treatment with MSDC-0602K has a less detrimental effect on bone loss and BM-MSC properties in obese mice in comparison to first generation of TZDs, pioglitazone. Bone parameters (bone microstructure, bone marrow adiposity, bone strength) were examined by µCT and 3-point bending test. Primary BM-MSCs were isolated and measured for osteoblast and adipocyte differentiation. Cellular senescence, bioenergetic profiling, nutrient consumption and insulin signaling were also determined. RESULTS: The findings demonstrate that MSDC-0602K improved bone parameters along with increased proportion of smaller BMAds in tibia of obese mice when compared to pioglitazone. Further, primary BM-MSCs isolated from treated mice and human BM-MSCs revealed decreased adipocyte and higher osteoblast differentiation accompanied with less inflammatory and senescent phenotype induced by MSDC-0602K vs. pioglitazone. These changes were further reflected by increased glycolytic activity differently affecting glutamine and glucose cellular metabolism in MSDC-0602K-treated cells compared to pioglitazone, associated with higher osteogenesis. CONCLUSION: Our study provides novel insights into the action of MSDC-0602K in obese mice, characterized by the absence of detrimental effects on bone quality and BM-MSC metabolism when compared to classical TZDs and thus suggesting a potential therapeutical use of MSDC-0602K in both metabolic and bone diseases.


Assuntos
Células-Tronco Mesenquimais , Tiazolidinedionas , Animais , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/metabolismo , Pioglitazona/metabolismo , Pioglitazona/farmacologia , Compostos de Espiro , Tiazolidinedionas/farmacologia
16.
Mol Nutr Food Res ; 66(17): e2200204, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35772018

RESUMO

SCOPE: This study aims to assess in rats whether normalizing maternal diet during lactation prevents the harmful effects of western diet (WD) consumption during the whole perinatal period on the lipidomic profile in maternal milk and offspring plasma. METHODS AND RESULTS: Control dams (CON-dams), fed with standard diet (SD); WD-dams, fed with WD prior and during gestation and lactation; and reversion dams (REV-dams), fed as WD-dams but moved to SD during lactation are followed. Lipidomic analysis is performed in milk and plasma samples from pups. Milk of WD-dams presents a different triacylglycerol composition and free fatty acid (FA) profile compared to CON-dams, including an increased ratio of pro-inflammatory to anti-inflammatory long-chain polyunsaturated FA. Such alterations, which are also present in the plasma of their offspring, are widely reversed in the milk of REV-dams and the plasma of their pups. This is related with the recovery of control adiponectin expression levels in the mammary gland, and the presence of decreased expression of pro-inflammatory factors. CONCLUSION: Implementing a healthy diet during lactation prevents early alterations in the plasma lipidome of pups associated to the maternal intake of an obesogenic diet, which may be related to the normalization of milk lipid content and the inflammatory state in the mammary gland.


Assuntos
Lipidômica , Leite , Animais , Dieta , Dieta Saudável , Ácidos Graxos/metabolismo , Feminino , Lactação/metabolismo , Leite/química , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Gravidez , Ratos
17.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466996

RESUMO

Impaired thermogenesis observed in mice with whole-body ablation of peroxisome proliferator-activated receptor-γ coactivator-1ß (PGC-1ß; officially known as PPARGC1B) may result from impaired brown fat (brown adipose tissue; BAT) function, but other mechanism(s) could be involved. Here, using adipose-specific PGC-1ß knockout mice (PGC-1ß-AT-KO mice) we aimed to learn whether specific PGC-1ß ablation in adipocytes is sufficient to drive cold sensitivity. Indeed, we found that warm-adapted (30°C) mutant mice were relatively sensitive to acute cold exposure (6°C). When these mice were subjected to cold exposure for 7 days (7-day-CE), adrenergic stimulation of their metabolism was impaired, despite similar levels of thermogenic uncoupling protein 1 in BAT in PGC-1ß-AT-KO and wild-type mice. Gene expression in BAT of mutant mice suggested a compensatory increase in lipid metabolism to counteract the thermogenic defect. Interestingly, a reduced number of contacts between mitochondria and lipid droplets associated with low levels of L-form of optic atrophy 1 was found in BAT of PGC-1ß-AT-KO mice. These genotypic differences were observed in warm-adapted mutant mice, but they were partially masked by 7-day-CE. Collectively, our results suggest a role for PGC-1ß in controlling BAT lipid metabolism and thermogenesis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Tecido Adiposo Marrom , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos , Animais , Humanos , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas de Ligação a RNA/metabolismo , Termogênese/genética
18.
Mol Metab ; 61: 101499, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35470094

RESUMO

OBJECTIVE: Classical ATP-independent non-shivering thermogenesis enabled by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is activated, but not essential for survival, in the cold. It has long been suspected that futile ATP-consuming substrate cycles also contribute to thermogenesis and can partially compensate for the genetic ablation of UCP1 in mouse models. Futile ATP-dependent thermogenesis could thereby enable survival in the cold even when brown fat is less abundant or missing. METHODS: In this study, we explore different potential sources of UCP1-independent thermogenesis and identify a futile ATP-consuming triglyceride/fatty acid cycle as the main contributor to cellular heat production in brown adipocytes lacking UCP1. We uncover the mechanism on a molecular level and pinpoint the key enzymes involved using pharmacological and genetic interference. RESULTS: ATGL is the most important lipase in terms of releasing fatty acids from lipid droplets, while DGAT1 accounts for the majority of fatty acid re-esterification in UCP1-ablated brown adipocytes. Furthermore, we demonstrate that chronic cold exposure causes a pronounced remodeling of adipose tissues and leads to the recruitment of lipid cycling capacity specifically in BAT of UCP1-knockout mice, possibly fueled by fatty acids from white fat. Quantification of triglyceride/fatty acid cycling clearly shows that UCP1-ablated animals significantly increase turnover rates at room temperature and below. CONCLUSION: Our results suggest an important role for futile lipid cycling in adaptive thermogenesis and total energy expenditure.


Assuntos
Tecido Adiposo Marrom , Termogênese , Trifosfato de Adenosina/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos , Camundongos Knockout , Triglicerídeos/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
19.
Virus Res ; 315: 198778, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35421435

RESUMO

Autophagy is a lysosomal degradative pathway responsible for recycling cytosolic proteins and organelles and also functions as an innate defense mechanism that host cells use against viral infection. While many viruses have evolved mechanisms to antagonize the antiviral effects of the autophagy pathway, others subvert autophagy to facilitate replication. For flaviviruses, both the positive and negative role of autophagy in virus replication has been reported. The interplay between autophagy and tick-borne encephalitis virus (TBEV) in innate immune cells is largely unknown. Here we report the relationship between an autophagy and TBEV replication in mouse macrophage cell line PMJ2-R using Hypr strain of TBEV. First, we examined the effect of Hypr infection on the autophagy pathway. We detected a mild and a temporary increase of autophagy marker LC3-II in Hypr-infected cells. The role of autophagy in TBEV replication was evaluated in autophagy related gene 5 (Atg5) knockdown cells (shAtg5). Our results showed that during an early stage of Hypr infection the viral titers were increased, while later on, at 72 hpi, the titers have declined in shAtg5 cells compared to control. Moreover, the higher number of virus-positive cells was observed in shAtg5 cells in early stage of infection and correlated with enhanced virus entry. Finally, we found an increased production of IFN-ß in Hypr-infected shAtg5 cells in comparison to control at 48 and 72 hpi implicating that autophagy restricts the amount of IFN produced by TBEV-infected macrophages. To conclude, in mouse macrophages TBEV replication is controlled by autophagy in time dependent manner, having temporally an antiviral and then a pro-viral role during infection. Our study points out to a delicate and complex involvement of autophagy machinery at level of virus entry and IFN-ß production when controlling TBEV infection.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Antivirais/metabolismo , Autofagia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/metabolismo , Camundongos , Replicação Viral
20.
Microbiologyopen ; 11(2): e1276, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35478281

RESUMO

Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database  was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species-level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.


Assuntos
Actinobacteria , Cavernas , Actinobacteria/genética , Bactérias , Carbonato de Cálcio , Cavernas/microbiologia , Humanos , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA