Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202847

RESUMO

Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.


Assuntos
Monofosfato de Citidina , Drosophila melanogaster , Animais , Fosforilação , Especificidade por Substrato , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Monofosfato de Citidina/análogos & derivados , Monofosfato de Citidina/metabolismo , Monofosfato de Citidina/química , Fosfotransferases/genética , Fosfotransferases/metabolismo , Fosfotransferases/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Mutação , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Desoxicitidina Quinase/química
2.
PLoS One ; 18(11): e0294696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032917

RESUMO

Gene-directed enzyme prodrug therapy is an emerging strategy for cancer treatment based on the delivery of a gene that encodes an enzyme that is able to convert a prodrug into a potent cytotoxin exclusively in target cancer cells. However, it is limited by the lack of suitable enzyme variants and a scarce choice of chemical bonds that could be activated. Therefore, this study is aimed to determine the capability of bacterial amidohydrolases YqfB and D8_RL to activate novel prodrugs and the effect such system has on the viability of eukaryotic cancer cells. We have established cancer cell lines that stably express the bacterial amidohydrolase genes and selected several N4-acylated cytidine derivatives as potential prodrugs. A significant decrease in the viability of HCT116 human colon cancer cell lines expressing either the YqfB or the D8_RL was observed after exposure to the novel prodrugs. The data we acquired suggests that bacterial YqfB and D8_RL amidohydrolases, together with the modified cytidine-based prodrugs, may serve as a promising enzyme-prodrug system for gene-directed enzyme prodrug therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo , Pró-Fármacos , Humanos , Pró-Fármacos/metabolismo , Amidoidrolases/genética , Citidina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Antineoplásicos/uso terapêutico
3.
Microb Biotechnol ; 12(1): 148-160, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30302933

RESUMO

A high-throughput method (≥ 106 of clones can be analysed on a single agar plate) for the selection of ester-hydrolysing enzymes was developed based on the uridine auxotrophy of Escherichia coli strain DH10B ΔpyrFEC and the acylated derivatives 2',3',5'-O-tri-acetyluridine and 2',3',5'-O-tri-hexanoyluridine as the sole source of uridine. The proposed approach permits the selection of hydrolases belonging to different families and active towards different substrates. Moreover, the ester group of the substrate used for the selection, at least partly, determined the specificity of the selected enzymes.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Hidrolases/genética , Hidrolases/isolamento & purificação , Metagenômica/métodos , Uridina/metabolismo , Clonagem Molecular , Meios de Cultura/química , Escherichia coli/crescimento & desenvolvimento , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA