Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 42(12): 2630-2641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728174

RESUMO

Multiple linear regression (MLR) models were developed for predicting chronic zinc toxicity to a freshwater microalga, Chlorella sp., using three toxicity-modifying factors (TMFs): pH, hardness, and dissolved organic carbon (DOC). The interactive effects between pH and hardness and between pH and DOC were also included. Models were developed at three different effect concentration (EC) levels: EC10, EC20, and EC50. Models were independently validated using six different zinc-spiked Australian natural waters with a range of water chemistries. Stepwise regression found hardness to be an influential TMF in model scenarios and was retained in all final models, while pH, DOC, and interactive terms had variable influence and were only retained in some models. Autovalidation and residual analysis of all models indicated that models generally predicted toxicity and that there was little bias based on individual TMFs. The MLR models, at all effect levels, performed poorly when predicting toxicity in the zinc-spiked natural waters during independent validation, with models consistently overpredicting toxicity. This overprediction may be from another unaccounted for TMF that may be present across all natural waters. Alternatively, this consistent overprediction questions the underlying assumption that models developed from synthetic laboratory test waters can be directly applied to natural water samples. Further research into the suitability of applying synthetic laboratory water-based models to a greater range of natural waters is needed. Environ Toxicol Chem 2023;42:2630-2641. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Modelos Lineares , Concentração de Íons de Hidrogênio , Austrália , Água Doce , Água , Poluentes Químicos da Água/toxicidade , Compostos Orgânicos , Zinco/toxicidade
2.
Environ Toxicol Chem ; 42(6): 1409-1419, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042563

RESUMO

Anthropogenic activities in Antarctica have led to contamination of terrestrial sites, and soils in ice-free areas have elevated concentrations of metals, particularly around current and historic research stations. Effective management of Antarctic contaminated sites depends on the assessment of risks to a representative range of native terrestrial species. Bdelloid rotifers are an abundant and biodiverse component of Antarctic limnoterrestrial communities and play a key role in nutrient cycling in Antarctic ecosystems. The present study investigates the toxicity of five metals (cadmium, copper, nickel, lead, and zinc) to the endemic bdelloid rotifer Adineta editae, both singly and in metal mixtures. Based on the concentrations tested, zinc was the most toxic metal to survival with a 7-day median lethal concentration (LC50) of 344 µg Zn/L, followed by cadmium with a 7-day LC50 of 1542 µg Cd/L. Rotifers showed high sensitivity using cryptobiosis (chemobiosis) as a sublethal behavioral endpoint. Chemobiosis was triggered in A. editae at low metal concentrations (e.g., 6 µg/L Pb) and is likely a protective mechanism and survival strategy to minimize exposure to stressful conditions. Lead and copper were most toxic to rotifer behavior, with 4-day median effect concentrations (EC50s) of 18 and 27 µg/L, respectively, followed by zinc and cadmium (4-day EC50 values of 52 and 245 µg/L, respectively). The response of rotifers to the metal mixtures was antagonistic, with less toxicity observed than was predicted by the model developed from the single-metal exposure data. The present study provides evidence that this bdelloid rotifer represents a relatively sensitive microinvertebrate species to metals and is recommended for use in contaminant risk assessments in Antarctica. Environ Toxicol Chem 2023;42:1409-1419. © 2023 SETAC.


Assuntos
Cobre , Poluentes Químicos da Água , Cobre/toxicidade , Cádmio/toxicidade , Regiões Antárticas , Ecossistema , Poluentes Químicos da Água/toxicidade , Metais/toxicidade , Zinco/toxicidade
3.
J Hazard Mater ; 452: 131298, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996541

RESUMO

Subsea pipelines carrying well fluids from hydrocarbon fields accumulate mercury. If the pipelines (after cleaning and flushing) are abandoned in situ, their degradation may release residual mercury into the environment. To justify pipeline abandonment, decommissioning plans include environmental risk assessments to determine the potential risk of environmental mercury. These risks are informed by environmental quality guideline values (EQGVs) governing concentrations in sediment or water above which mercury toxicity may occur. However, these guidelines may not consider e.g., the bioaccumulation potential of methylated mercury. Therefore, EQGVs may not protect humans from exposure if applied as the sole basis for risk assessments. This paper outlines a process to assess the EQGVs' protectiveness from mercury bioaccumulation, providing preliminary insights to questions including how to (1) determine pipeline threshold concentrations, (2) model marine mercury bioaccumulation, and (3) determine exceedance of the methylmercury tolerable weekly intake (TWI) for humans. The approach is demonstrated with a generic example using simplifications to describe mercury behaviour and a model food web. In this example, release scenarios equivalent to the EQGVs resulted in increased marine organism mercury tissue concentrations by 0-33 %, with human dietary methylmercury intake increasing 0-21 %. This suggests that existing guidelines may not be protective of biomagnification in all circumstances. The outlined approach could inform environmental risk assessments for asset-specific release scenarios but must be parameterised to reflect local environmental conditions when tailored to local factors.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Humanos , Animais , Compostos de Metilmercúrio/metabolismo , Mercúrio/análise , Cadeia Alimentar , Bioacumulação , Organismos Aquáticos/metabolismo , Monitoramento Ambiental/métodos , Peixes/metabolismo , Poluentes Químicos da Água/análise
4.
J Environ Radioact ; 258: 107093, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36621180

RESUMO

This modelling study uses the ERICA Tool and Bateman's equation to derive sediment threshold values for radiation protection of the marine environment relevant to NORM-contaminated products (radium-contaminated scales, 210Pb films and 210Po films) found in subsea oil and gas infrastructure. Threshold values are calculated as the activity concentration of the NORM-contaminated products' head of chain radionuclide (i.e., 226Ra + 228Ra, 210Pb, or 210Po) that will increase radiation dose rates in sediments by 10 µGy/h to the most exposed organism at a given release time. The minimum threshold value (corresponding to peak radiation dose rates from the ingrowth of progeny) were for radium-contaminated scales, 0.009 Bq/g of 226Ra, 0.029 Bq/g of 228Ra (in the absence of 226Ra) or 0.14 Bq/g of 228Ra (in the presence of 226Ra), followed by 0.015 Bq/g for 210Pb films, and 1.6 Bq/g for 210Po films. These may be used as default threshold values. Added activity concentrations of the NORM-contaminated products to marine sediments below these threshold values implies a low radiological risk to organisms while exceedances imply that further investigation is necessary. Using contaminated product specific parameterisations, such as Kd values derived for Ra from a BaSO4 matrix in seawater, could greatly affect threshold values. Strong consideration should be given to deriving such data as part of specific radiological risk assessments for these products.


Assuntos
Monitoramento de Radiação , Rádio (Elemento) , Ecossistema , Rádio (Elemento)/análise , Chumbo
5.
Environ Pollut ; 318: 120797, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496066

RESUMO

Zinc is a contaminant of concern in aquatic environments and is a known toxicant to many aquatic organisms. Dissolved organic matter (DOM) is a toxicity modifying factor for zinc and is an important water chemistry parameter. This study investigated the influence of DOM concentration, source, and water pH on the chronic toxicity of zinc to a freshwater microalga, Chlorella sp. The influence of DOM on zinc toxicity was dependent on both concentration and source. In the absence of DOM, the 72-h EC50 was 112 µg Zn.L-1. In the presence of a DOM high in fulvic-like components, zinc toxicity was either slightly decreased (<4-fold increase in EC10s across 15 mg C.L-1 range) or unchanged (minimal difference in EC50s). In the presence of a DOM high in humic-like (aromatic and high molecular weight) components, zinc toxicity was slightly decreased at the EC10 level and strongly increased at the EC50 level. The influence of pH on zinc toxicity was dependent on the source of DOM present in the water. In the presence of DOM high in humic-like components pH did not influence toxicity. In the presence of DOM high in fulvic-like components, pH had a significant effect on EC50 values. Labile zinc (measured by diffusive gradients in thin-films) followed linear relationships with dissolved zinc but could not explain the changes in observed toxicity, with similar DGT-labile zinc relationships shown for the two DOMs despite each DOM influencing toxicity differently. This indicates changes in toxicity may be unrelated to changes in zinc lability. The results suggest that increased toxicity of zinc in the presence of DOM may be due to direct uptake of Zn-DOM complexes. This study highlights the importance of considering DOM source and characteristics when incorporating DOM into water quality guidelines through bioavailability models.


Assuntos
Chlorella , Microalgas , Zinco/toxicidade , Água Doce/química , Compostos Orgânicos , Matéria Orgânica Dissolvida , Concentração de Íons de Hidrogênio
6.
J Environ Radioact ; 251-252: 106979, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963215

RESUMO

Scale residues can accumulate on the interior surfaces of subsea petroleum pipes and may incorporate naturally occurring radioactive materials (NORM). The persistent nature of 'NORM scale' may result in a radiological dose to the organisms living on or near intact pipelines. Following a scenario of in-situ decommissioning of a subsea pipeline, marine organisms occupying the exteriors or interiors of petroleum structures may have close contact with the scale or other NORM-associated contaminated substances and suffer subsequent radiological effects. This case study used radiological dose modelling software, including the ERICA Tool (v2.0), MicroShield® Pro and mathematical equations, to estimate the likely radiological doses and risks of effects from NORM-contaminated scale to marine biota from a decommissioned offshore oil and gas pipeline. Using activity concentrations of NORM (226Ra, 210Po, 210Pb, 228Ra, 228Th) from a subsea pipeline from Australia, environmental realistic exposure scenarios including radiological exposures from both an intact pipe (external only; accounting for radiation shielding by a cylindrical carbon steel pipe) and a decommissioned pipeline with corrosive breakthrough (resulting in both internal and external radiological exposure) were simulated to estimate doses to model marine organisms. Predicted dose rates for both the external only exposure (ranging from 26 µGy/h to 33 µGy/h) and a corroded pipeline (ranging from 300 µGy/h to 16,000 µGy/h) exceeded screening levels for radiological doses to environmental receptors. The study highlighted the importance of using scale-specific solubility data (i.e., Kd) values for individual NORM radionuclides for ERICA assessments. This study provides an approach for conducting marine organism dose assessments for NORM-contaminated subsea pipelines and highlights scientific gaps required to undertake risk assessments necessary to inform infrastructure decommissioning planning.


Assuntos
Petróleo , Monitoramento de Radiação , Radioatividade , Organismos Aquáticos , Biota , Monitoramento de Radiação/métodos , Medição de Risco
7.
J Hazard Mater ; 438: 129348, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35797785

RESUMO

Many oil and gas fields are nearing production cessation and will require decommissioning, with the preferred method being complete infrastructure removal in most jurisdictions. However, decommissioning in situ, leaving some disused components in place, is an option that may be agreed to by the regulators and reservoir titleholders in some circumstances. To understand this option's viability, the environmental impacts and risks of any residual contaminants assessed. Mercury, a contaminant of concern, is naturally present in hydrocarbon reservoirs, may contaminate offshore processing and transmission infrastructure, and can biomagnify in marine ecosystems. Mercury's impact is dependent on its speciation, concentration, and the exposure duration. However, research characterising and quantifying the amount of mercury in offshore infrastructure and the efficacy of decontamination is limited. This review describes the formation of mercury-contaminated products within oil and gas infrastructure, expected exposure pathways after environmental release, possible impacts, and key research gaps regarding the ecological risk of in situ decommissioned contaminated infrastructure. Suggestions are made to overcome these gaps, improving the in situ mercury quantification in infrastructure, understanding environmental controls on, and forecasting of, mercury methylation and bioaccumulation, and the cumulative impacts of multiple stressors within decommissioned infrastructures.


Assuntos
Ecossistema , Mercúrio , Meio Ambiente , Mercúrio/toxicidade , Campos de Petróleo e Gás
8.
Environ Sci Process Impacts ; 24(5): 783-793, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35442258

RESUMO

Zinc is an essential element for aquatic organisms, however, activities such as mining and refining, as well as zinc's ubiquitous role in modern society can contribute to elevated environmental concentrations of zinc. Water hardness is widely accepted as an important toxicity modifying factor for metals in aquatic systems, though other factors such as pH are also important. This study investigated the influence of increasing water hardness, at three different pH values (6.7, 7.6 and 8.3), on the chronic toxicity of zinc to the growth rate of a microalgae, Chlorella sp. Zinc toxicity decreased with increasing hardness from 5 to 93 mg CaCO3 L-1 at all three pH values tested. The 72 h growth rate inhibition EC50 values ranged from 6.2 µg Zn L-1 (at 5 mg CaCO3 L-1, pH 8.3) to 184 µg Zn L-1 (at 92 mg CaCO3 L-1, pH 6.7). Increases in hardness from 93 to 402 mg CaCO3 L-1 generally resulted in no significant (p > 0.05) reduction in zinc toxicity. DGT-labile zinc measurements did not correspond with the observed changes in zinc toxicity as hardness was varied within a pH treatment. This suggests that cationic competition from increased hardness is decreasing zinc toxicity, rather than changes in metal lability. This study highlighted that current hardness algorithms used in water quality guidelines may not be sufficiently protective of sensitive species, such as Chlorella sp., in high hardness waters.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Cobre/toxicidade , Água Doce , Dureza , Concentração de Íons de Hidrogênio , Metais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
9.
Environ Pollut ; 301: 119012, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183670

RESUMO

Predicting the toxicity of effluent exposures, which vary in duration, composition, and concentration, poses a challenge for ecological risk assessments. Effluent discharges may frequently result in the exposure of aquatic organisms to high concentrations of mixed contaminants for short durations. In the receiving environment effluents will undergo dilution and physical or chemical processes that further reduce contaminant concentrations at varying rates. To date, most studies comparing toxicity risks of continuous and pulsed contaminant exposures have focused on individual contaminants. In this study, the toxicity to the tropical euryhaline copepod Acartia sinjiensis of two complex effluents was assessed, comparing 6- and 18-h pulses and 78-h continuous exposures. Observations of larval development success and population size were completed after a 78-h incubation period, to observe for latent effects after pulse exposures. The chemical compositions of the effluents were assessed over time and different contaminants (i.e., metals, ammonia or organics) declined at differing rates. These were characterized as either a minimal, steady, or rapid decline. Nauplii development and population after 78 h were more impacted by effluent exposures following an 18-h pulse, compared to a 6-h pulse. Based on pulse-exposure concentrations, the 50% effect concentrations (EC50) were similar for continuous and 18-h exposures but up to 3-fold greater (lower toxicity) for the shorter 6-h exposures. Time-weighted average concentrations did not accurately predict toxicity from pulse exposures of the effluents. Concentration-addition toxicity modelling using toxicity data from pulse exposures of single contaminants was useful for predicting the toxicity of chemical mixtures exposed for varying durations. Recommendations for modified approaches to assessing risks of short-term effluent discharges are discussed.


Assuntos
Copépodes , Poluentes Químicos da Água , Amônia , Animais , Cobre/toxicidade , Metais/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
J Environ Radioact ; 241: 106774, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823203

RESUMO

Thousands of offshore oil and gas facilities are coming to the end of their life in jurisdictions worldwide and will require decommissioning. In-situ decommissioning, where the subsea components of that infrastructure are left in the marine environment following the end of its productive life, has been proposed as an option that delivers net benefits, including from: ecological benefits from the establishment of artificial reefs, economic benefits from associated fisheries, reduced costs and improved human safety outcomes for operators. However, potential negative impacts, such as the ecological risk of residual contaminants, are not well understood. Naturally occurring radioactive materials (NORM) are a class of contaminants found in some oil and gas infrastructure (e.g. pipelines) and includes radionuclides of uranium, thorium, radium, radon, lead, and polonium. NORM are ubiquitous in oil and gas reservoirs around the world and may form contamination products including scales and sludges in subsea infrastructure due to their chemistries and the physical processes of oil and gas extraction. The risk that NORM from these sources pose to marine ecosystems is not yet understood meaning that decisions made about decommissioning may not deliver the best outcomes for environments. In this review, we consider the life of NORM-contamination products in oil and gas systems, their expected exposure pathways in the marine environment, and possible ecological impacts following release. These are accompanied by the key research priorities that need to better describe risk associated with decommissioning options.


Assuntos
Ecossistema , Monitoramento de Radiação , Pesqueiros , Humanos , Campos de Petróleo e Gás , Medição de Risco
11.
Environ Sci Process Impacts ; 23(9): 1362-1375, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351327

RESUMO

Salinity in the Antarctic nearshore marine environment is seasonally dynamic and climate change is driving greater variability through altered sea ice seasons, ocean evaporation rates, and increased terrestrial ice melt. The greatest salinity changes are likely to occur in the nearshore environment where elevated metal exposures from historical waste or wastewater discharge occur. How salinity changes affect metal toxicity has not yet been investigated. This study investigated the toxicity of cadmium, copper, nickel, lead, and zinc, and their equitoxic mixtures across a salinity gradient to the Antarctic marine microalga Phaeocystis antarctica. In the metal-free control exposures, algal population growth rates were significantly lower at salinities <20 PSU or >35 PSU compared to the control growth rate at 35 PSU of 0.60 ± 0.05 doublings per day and there was no growth below 10 or above 68 PSU. Salinity-induced changes to metal speciation and activity were investigated using the WHAM VII model. Percentages of free ion activity and metal-organic complexes increased at decreasing salinities while the activity of inorganic metal complexes increased with increasing salinities. Despite metal speciation and activity changes, toxicity was generally unchanged across the salinity gradient except that there was less copper toxicity and more lead toxicity than model predictions at salinities of 15 and 25 PSU and antagonistic interactions in metal-mixture treatments. In mixtures with and without copper, it was shown that copper was responsible for ∼50% of the antagonism from observed toxicity at salinities below 45 PSU. Across all treatments, using different metal fractions in toxicity models did not improve toxicity predictions compared to dissolved metal concentrations. These results provide evidence that P. antarctica is unlikely to be at a greater risk from metal contaminants as a result of salinity changes.


Assuntos
Haptófitas , Microalgas , Poluentes Químicos da Água , Chumbo , Salinidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
12.
Environ Pollut ; 287: 117627, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426394

RESUMO

Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 µg Cu L-1 in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 µg Zn L-1 in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 µg L-1 of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Regiões Antárticas , Ecossistema , Sedimentos Geológicos , Lagos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
13.
Environ Toxicol Chem ; 40(10): 2836-2845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34297855

RESUMO

Increased focus on the development and application of bioavailability-based metal water quality guideline values requires increased understanding of the influence of water chemistry on metal bioavailability and toxicity. Development of empirical models, such as multiple linear regression models, requires the assessment of the influence of individual water quality parameters as toxicity-modifying factors. The present study investigated the effect of pH on the lability and toxicity of zinc (Zn) to a tropical green microalga (Chlorella sp.). Zinc speciation and lability were explored using the Windermere Humic Aqueous Model (WHAM7), ultrafiltration, and diffusive gradients in thin films (DGT). Zinc toxicity increased significantly with increasing pH from 6.7 to 8.3, with 50% growth inhibition effect concentrations decreasing from 185 to 53 µg l-1 across the pH range. Linear relationships between DGT-labile Zn and dissolved Zn did not vary across the tested pH range, nor did the linear relationship between dissolved (<0.45 µm) and ultrafiltered (<3 kDa) Zn. Our findings show that Zn toxicity to this freshwater alga is altered as a function of pH across environmentally realistic pH ranges and that these toxicity changes could not be explained by Zn speciation and lability as measured by DGT and WHAM7. Environ Toxicol Chem 2021;40:2836-2845. © 2021 SETAC.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Água Doce , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade
14.
Environ Pollut ; 285: 117212, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33933874

RESUMO

Effluent discharges can potentially result in high concentrations of metals entering aquatic environments for short durations, ranging from a few hours to days. The environmental risks of such exposures are challenging to accurately assess. Risk assessment tools for effluent discharges include comparison of toxicant concentrations with guideline values and the use of direct toxicity assessments, both of which were designed to assess continuous, rather than pulse, contaminant exposures. In this study, a chronic pulse-exposure toxicity test was developed using the tropical euryhaline calanoid copepod Acartia sinjiensis. This copepod has a rapid life cycle and is highly sensitive to metal contaminants, with 50% effect concentrations (chronic EC50) for larval development of 1.7, 8.6 and 0.7 µg L-1 for copper, nickel and zinc, respectively. The toxicities of copper and nickel were assessed as a continuous exposure (78 h) and as pulses (3, 6 and 18 h) initiated at varying life stages, from egg to copepodite, and measured larval development over 78 h. Generally, 24-h old nauplii were more sensitive or of similar sensitivity to copper and nickel pulses than 48-h old nauplii. The 78-h test duration enabled observations of chronic effects following pulse exposures, which frequently occurred in the absence of acute effects. The EC50 values for pulse exposures were higher than those of continuous exposure by up to approximately 16-fold and 15-fold for copper and nickel, respectively. When metal-pulse exposure concentrations were expressed using the time-weighted averaged concentration (TAC), resultant concentration response curves were similar to those in continuous exposures to the same metal, suggesting that thresholds based on continuous exposures were also protective for pulse exposures to these metals. This research improves our understanding of the toxicity of pulse contaminant exposures and assists with developing improved approaches to for the risk assessment and regulation of short-term contaminant discharges.


Assuntos
Copépodes , Poluentes Químicos da Água , Animais , Cobre , Metais/toxicidade , Testes de Toxicidade Crônica , Poluentes Químicos da Água/toxicidade
15.
Environ Toxicol Chem ; 40(7): 1908-1918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33751626

RESUMO

There have been limited studies on the effects of toxicity-modifying factors, such as dissolved organic matter (DOM), on the toxicity of metal mixtures to aquatic biota. The present study investigated the effects of DOM concentration (low, 2.8 ± 0.1 mg C/L; high, 11 ± 1.0 mg C/L) and DOM source (predominantly terrestrial or microbial) on the chronic toxicity of copper (Cu) and nickel (Ni) binary mixtures to the green freshwater microalga Chlorella sp. This was assessed by using a full factorial design of 72-h growth inhibition bioassays. Measured algal growth rate was compared with growth predicted by the concentration addition and independent action reference models. Model predictions were based on concentrations of dissolved metals, labile metals (measured by diffusive gradients in thin films [DGT]), and calculated free metal ions (determined by the Windermere Humic Aqueous Model). Copper/Ni mixture toxicity was synergistic to Chlorella sp. in the absence of added DOM, with evidence of metal concentration-dependent toxicity at low effect concentrations. As DOM concentration increased, the mixture interaction changed from synergism to noninteraction or antagonism depending on the metal speciation method used. The DOM source had no significant effect on mixture interaction when based on dissolved and free metal ion concentrations but was significantly different when based on DGT-labile metal concentrations. Ratio-dependent mixture interaction was observed in all treatments, with increased deviation from the reference model predictions as the mixture changed from Ni- to Cu-dominated. The present study demonstrated that both DOM concentration and source can significantly change metal mixture toxicity interactions and that these interactions can be interpreted differently depending on the metal speciation method used. Environ Toxicol Chem 2021;40:1908-1918. © 2021 SETAC.


Assuntos
Chlorella , Poluentes Químicos da Água , Cobre/análise , Cobre/toxicidade , Matéria Orgânica Dissolvida , Níquel/análise , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Chemosphere ; 269: 128675, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33657749

RESUMO

Metal contaminants in Antarctic soils are typically found around research stations which are concentrated in ice-free coastal areas. The risk of these contaminants to the Antarctic environment is not well understood, given Antarctica's unique organisms and climate. This study assessed the use of diffusive gradients in thin-films (DGT), a passive sampler that measures fluxes of labile metals from soils to porewaters, in Antarctic soils. DGT-labile measurements were compared to three chemical extractants of increasing strength including high-purity water, dilute acid (1 M HCl), and concentrated acids (3:1 v/v HNO3:HCl), to understand differences in contaminant geochemistry that may affect environmental risk. One site had high lead concentrations measured with dilute (114 ± 4 mg kg-1) and concentrated (150 ± 10 mg kg-1) acids, while DGT-labile concentrations were below the method detection limit (0.5 µg L-1), indicating that the lead species has low solubility or lability. Another site had low concentrations of zinc measured by dilute (36.2 ± 0.5 mg kg-1) or concentrated (76 ± 6 mg kg-1) acid extracts, but had high DGT-labile concentrations (350 ± 80 µg L-1). This reflects an active source of zinc supplied from soil to pore water over time. Copper was found to be acid extractable, water-soluble, and DGT-labile, with DGT-labile concentrations of up to 12 µg L-1. Despite the soil and metal-specific geochemical differences, any of the extracts could be used with statistical clustering techniques to identify differences in sites with elevated metal concentrations. This study shows that the DGT-method can identify contaminated sites comparably to chemical extracts but provides environmentally relevant measurements of metal contaminant lability in Antarctic soils.


Assuntos
Poluentes do Solo , Solo , Regiões Antárticas , Monitoramento Ambiental , Poluentes do Solo/análise , Zinco/análise
17.
Chemosphere ; 273: 128454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33077193

RESUMO

Nickel is often a metal of interest in regulatory settings given its increasing prevalence in disturbed freshwaters and as a known toxicant to fish and algae. Dissolved organic matter (DOM) is a toxicity modifying factor for nickel and a ubiquitous water physicochemical parameter. This study investigated the effect of DOM concentration and source on the chronic toxicity of nickel to Chlorella sp. using three DOM at two concentrations (3.1 ± 1.8 and 12 ± 1.3 mg C/L). Nickel toxicity to Chlorella sp. was not strongly influenced by DOM concentration. In the absence of DOM, the 72-h EC50 for Chlorella sp. was 120 µg Ni/L. In the low DOM treatment, nickel toxicity was either unchanged or slightly increased (87-140 µg Ni/L) and unchanged or slightly decreased in the high DOM treatment (130-240 µg Ni/L). DOM source also had little effect on nickel toxicity, the largest differences in nickel toxicity occurring in the high DOM treatment. Labile nickel (measured by diffusive gradients in thin-films, DGT) followed strong linear relationships with dissolved nickel (R2 > 0.97). DOM concentration and source had limited effect on DGT-labile nickel. DGT-labile nickel decreased with increasing DOM concentration for only one of the three DOM. Modelled labile nickel concentrations (expressed as maximum dynamic concentrations, cdynmax) largely agreed with DGT-labile nickel and suggested that toxicity is explained by free Ni2+ concentrations. This study confirms that nickel toxicity is largely unaffected by DOM concentration or source and that both measured (DGT) and modelled (cdynmax and free Ni2+) nickel concentrations can explain nickel toxicity.


Assuntos
Chlorella , Poluentes Químicos da Água , Animais , Água Doce , Metais , Níquel/análise , Níquel/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
18.
Environ Pollut ; 266(Pt 2): 115141, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32659625

RESUMO

Australian tropical freshwaters can experience extreme seasonal variability in rainfall and run off, particularly due to pulse events such as storms and cyclones. This study investigated how seasonal variability in dissolved organic matter (DOM) quality impacted the chronic toxicity of copper to a tropical green alga (Chlorella sp.) in the presence of two concentrations of DOM (low: ∼2 mg C/L; high: ∼10 mg C/L) collected from three tropical waters. Copper speciation and lability were explored using diffusive gradients in thin-films (DGT) and modelled maximum dynamic concentrations (cdynmax) using data derived from the Windermere Humic Aqueous Model (WHAM VII). Relationships between copper lability and copper toxicity were assessed as potential tools for predicting toxicity. Copper toxicity varied significantly with DOM concentration, source and season. Copper toxicity decreased with increasing concentrations of DOM, with 50% growth inhibition effect concentrations (EC50) increasing from 1.9 µg Cu/L in synthetic test waters with no added DOM (0.34 mg C/L) up to 63 µg Cu/L at DOM concentrations of 9.9 mg C/L. Copper toxicity varied by up to 2-fold between the three DOM sources and EC50 values were generally lower in the presence of wet season DOM compared to dry season DOM. Linear relationships between DGT-labile copper and dissolved copper were significantly different between DOM source, but not concentration or season. Modelled cdynmax consistently under-predicted labile copper in high DOM treatments compared to DGT measurements but performed better in low DOM treatments, indicating that this method is DOM-concentration dependent. Neither speciation method was a good surrogate for copper toxicity in the presence of different sources of natural DOM. Our findings show that DOM source and season, not just DOM concentration, affect copper toxicity to freshwater biota. Therefore, DOM quality should be considered as a toxicity-modifying factor for future derivation of bioavailability-based site-specific water quality guideline values.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água/análise , Austrália , Cobre/análise , Água Doce , Estações do Ano
19.
Environ Sci Technol ; 54(1): 306-315, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657908

RESUMO

Robust environmental assessments and contaminant monitoring in Antarctic near-shore marine environments need new techniques to overcome challenges presented by a highly dynamic environment. This study outlines an approach for contaminant monitoring and risk assessment in Antarctic marine conditions using diffusive gradients in thin-films (DGT) coupled to regionally specific ecotoxicology data and environmental quality standards. This is demonstrated in a field study where DGT samplers were deployed in the near-shore marine environment of East Antarctica around the operational Casey station and the abandoned Wilkes station to measure the time-averaged biologically available fraction of metal contaminants. The incorporation of DGT-labile concentrations to reference toxicity mixture models for three Antarctic organisms predicted low toxic effects (<5% effect to the growth or development of each organism). The comparison of metal concentrations to the Australian and New Zealand default water quality guideline values (WQGVs) showed no marine site exceeding the WQGVs for 95% species protection. However, all sites exceeded the 99% WQGVs due to copper concentrations that are likely of geogenic origin (i.e., not from anthropogenic sources). This study provides evidence supporting the use of the DGT technique to monitor contaminants and assess their environmental risk in the near-shore marine environment of Antarctica.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Regiões Antárticas , Austrália , Metais , Nova Zelândia
20.
Environ Res ; 179(Pt A): 108745, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31546131

RESUMO

Firefighting is an occupation with exposure to a wide range of chemicals by means of inhalation, ingestion or dermal contact. Although advancements in personal protective clothing and equipment have reduced the risks for acute exposure during fire suppression operations, chronic exposure may still be present at elevated levels in fire stations. The aim of this study was to assess chemicals in air and on surfaces in fire stations, compare this with other indoor environments, and use this data to estimate firefighter exposure within the fire station. Fifteen Australian fire stations were selected for chemical exposure assessment by means of 135 active air monitors, 60 passive air monitors, and 918 wipe samples. These samples were collected from the interior and exterior of fire stations, from personal protective clothing and equipment, and from within the cabins of vehicles. Chemicals analysed included polycyclic aromatic hydrocarbons, volatile organic compounds, metals, and diesel particulate matter. Specific chemicals were detected from within each class of chemicals, with metals being most frequently detected. Statistical analysis by means of Pearson's Correlations and threshold tests were used to consider the source of exposure, and a collective addition risk quotient calculation was used to determine firefighter exposure. The presence of metals in fire stations was compared with findings from global indoor dust measurements. Concentrations across firefighter ensemble, inside vehicle cabins, and within fire stations for chromium (39.5-493 µg/m2), lead (46.7-619 µg/m2), copper (594-3440 µg/m2), zinc (11100-20900 µg/m2), nickel (28.6-2469 µg/m2) and manganese (73.0-997 µg/m2) were in most instances orders of magnitude higher when compared with concentrations measured in homes and offices. Our study suggests that the elevated concentrations are associated with the transfer of chemicals from fire suppression operations. Due to this elevated concentration of chemicals, firefighters may face increased exposure, and in turn increased risk of adverse health effects. Data suggest that exposure may be mitigated by means of increased laundering frequency and increased decontamination at the scene of the fire.


Assuntos
Poluentes Ocupacionais do Ar/análise , Bombeiros , Metais , Exposição Ocupacional/estatística & dados numéricos , Compostos Orgânicos Voláteis/análise , Austrália , Humanos , Hidrocarbonetos Policíclicos Aromáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA