Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(4): e1010710, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068109

RESUMO

Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in ß-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS ß-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS ß-cells. Consistent with reduced ER chaperones levels, PWS INS-1 ß-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS ß-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic ß-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and ß-cell secretory pathway function.


Assuntos
Síndrome de Prader-Willi , Camundongos , Animais , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , Secreção de Insulina/genética , Chaperona BiP do Retículo Endoplasmático , Regulação para Baixo , Proteômica , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Insulina/genética , Insulina/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo
2.
J Inherit Metab Dis ; 45(3): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218577

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene and is among the disorders tested for in newborn screening (NBS). Confirmatory sequencing following suspected VLCADD NBS results often identifies variants of uncertain significance (VUS) in the ACADVL gene, leading to uncertainty of diagnosis and providing effective treatment regimen. Currently, ACADVL has >300 VUSs in the ClinVar database that requiring characterization to determine potential pathogenicity. In this study, CRISPR/Cas9 genome editing was used to knock out ACADVL in HEK293T cells, and targeted deletion was confirmed by droplet digital polymerase chain reaction (PCR). No VLCAD protein was detected and an 84% decrease in enzyme activity using the electron transfer flavoprotein fluorescence reduction assay and C21-CoA as substrate was observed compared to control. Plasmids containing control or variant ACADVL coding sequence were transfected into the ACADVL null HEK293T. While transfection of control ACADVL restored VLCAD protein and enzyme activity, cells expressing the VLCAD Val283Ala mutant had 18% VLCAD enzyme activity and reduced protein compared to control. VLCAD Ile420Leu, Gly179Arg, and Gln406Pro produced protein comparable to control but 25%, 4%, and 5% VLCAD enzyme activity, respectively. Leu540Pro and Asp570_Ala572dup had reduced VLCAD protein and 10% and 3% VLCAD enzyme activity, respectively. VLCADD fibroblasts containing the same variations had decreased VLCAD protein and activity comparable to the transfection experiments. Generating ACADVL null HEK293T cell line allowed functional studies to determine pathogenicity of ACADVL exonic variants. This approach can be applied to multiple genes for other disorders identified through NBS.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Células HEK293 , Humanos , Imidazóis , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Triagem Neonatal , Sulfonamidas , Tiofenos
3.
Sci Rep ; 12(1): 3045, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197517

RESUMO

Transport and Golgi Organization protein 2 Homolog (TANGO2)-related disease is an autosomal recessive disorder caused by mutations in the TANGO2 gene. Symptoms typically manifest in early childhood and include developmental delay, stress-induced episodic rhabdomyolysis, and cardiac arrhythmias, along with severe metabolic crises including hypoglycemia, lactic acidosis, and hyperammonemia. Severity varies among and within families. Previous studies have reported contradictory evidence of mitochondrial dysfunction. Since the clinical symptoms and metabolic abnormalities are suggestive of a broad dysfunction of mitochondrial energy metabolism, we undertook a broad examination of mitochondrial bioenergetics in TANGO2 deficient patients utilizing skin fibroblasts derived from three patients exhibiting TANGO2-related disease. Functional studies revealed that TANGO2 protein was present in mitochondrial extracts of control cells but not patient cells. Superoxide production was increased in patient cells, while oxygen consumption rate, particularly under stress, along with relative ATP levels and ß-oxidation of oleate were reduced. Our findings suggest that mitochondrial function should be assessed and monitored in all patients with TANGO2 mutation as targeted treatment of the energy dysfunction could improve outcome in this condition.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Mitocôndrias , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo
4.
Mol Genet Metab ; 134(1-2): 29-36, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34535384

RESUMO

INTRODUCTION: Clinical standard of care for newborn screening (NBS) is acylcarnitine metabolites quantitation by tandem mass spectrometry (MS/MS) from dried blood spots. Follow up sequencing often results in identification of one or more variants of uncertain significance (VUS). Isovaleric acidemia (IVA) is an autosomal recessive inborn error of metabolism caused by deficiency of isovaleryl-CoA dehydrogenase (IVDH) in the Leu catabolism pathway. Many IVD mutations are characterized as VUS complicating IVA clinical diagnoses and treatment. We present a testing platform approach to confirm the functional implication of VUS identified in newborns with IVA applicable to multiple inborn errors of metabolism identified by NBS. METHODS: An IVD null HEK293T cell culture model was generated by using a dual sgRNA CRISPR/Cas9 genome-editing strategy targeting IVD exons 2-3. Clonal cell lines were confirmed by a combination of genomic breakpoint sequencing and droplet digital PCR. The IVD null model had no IVDH antigen signal and 96% reduction in IVDH enzyme activity. The IVD null model was transfected with vectors containing control or variant IVD and functional assays were performed to determine variant pathogenicity. RESULTS: c.149G > C (p.Arg50Pro; precursor numbering), c.986T > C (p.Met329Thr), and c.1010G > A (p.Arg337Gln), c.1179del394 f. mutant proteins had reduced IVDH protein and activity. c.932C > T (p.Ala311Val), c.707C > T (p.Thr236Ile), and c.1232G > A (p.Arg411Gln) had stable IVDH protein, but no enzyme activity. c.521T > G (p.Val174Gly) had normal IVDH protein and activity. IVD variant transfection results confirmed results from IVA fibroblasts containing the same variants. CONCLUSIONS: We have developed an IVD null HEK293T cell line to rapidly allow determination of VUS pathogenicity following identification of novel alleles by clinical sequencing following positive NBS results for suspected IVA. We suggest similar models can be generated via genome-editing for high throughput assessment of VUS function for a multitude of inborn errors of metabolism and can ideally supplement NBS programs.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Variação Genética , Isovaleril-CoA Desidrogenase/deficiência , Isovaleril-CoA Desidrogenase/genética , Mutação , Triagem Neonatal/métodos , Células HEK293 , Humanos , Técnicas In Vitro , Recém-Nascido , Isovaleril-CoA Desidrogenase/classificação , Modelos Biológicos , Técnicas de Diagnóstico Molecular , Triagem Neonatal/normas , Espectrometria de Massas em Tandem
5.
JCI Insight ; 5(20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33055427

RESUMO

Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 µM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.


Assuntos
Fígado/metabolismo , Fenilalanina Hidroxilase/genética , Fenilalanina/genética , Fenilcetonúrias/genética , Adolescente , Adulto , Animais , Sistemas CRISPR-Cas/genética , Dieta , Modelos Animais de Doenças , Edição de Genes , Humanos , Fígado/efeitos dos fármacos , Fenótipo , Fenilalanina/metabolismo , Fenilalanina/farmacologia , Fenilcetonúrias/dietoterapia , Fenilcetonúrias/metabolismo , Fenilcetonúrias/patologia , Suínos
6.
Glia ; 68(10): 2040-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32187401

RESUMO

Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA-binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non-cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL (FusOL cKO). The FusOL cKO mice show increased novelty-induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate-limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the FusOL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the FusOL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Hipercinese/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína FUS de Ligação a RNA/deficiência , Animais , Colesterol/genética , Hipercinese/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Bainha de Mielina/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína FUS de Ligação a RNA/genética
7.
Placenta ; 88: 61-67, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675530

RESUMO

INTRODUCTION: Imprinted genes are preferentially expressed from one parentally inherited allele, and many are crucial to the regulation of placental function and fetal growth. Murine Krüppel-like factor 14 (Klf14) is a maternally expressed imprinted transcription factor that is a component of the Mest imprinted gene cluster on mouse chromosome 6. We sought to determine if loss of Klf14 expression alters the course of normal mouse extraembryonic development. We also used high-throughput RNA sequencing (RNAseq) to identify a set of differentially expressed genes (DEGs) in placentas with loss of Klf14. METHODS: We generated a Klf14 knockout (Klf14null) mouse using recombineering and transgenic approaches. To identify DEGs in the mouse placenta we compared mRNA transcriptomes derived from 17.5dpc Klf14matKO and wild-type littermate placentas by RNAseq. Candidate DEGs were confirmed with quantitative reverse transcription PCR (qPCR) on an independent cohort of male and female gestational age matched Klf14matKO placentas. RESULTS: We found that 17.5dpc placentas inheriting a maternal null allele (Klf14matKO) had a modest overgrowth phenotype and a near complete ablation of Klf14 expression. However, there was no effect on fetal growth. We identified 20 DEGs differentially expressed in Klf14matKO placentas by RNAseq, and subsequently validated five that are highly upregulated (Begain, Col26a1, Fbln5, Gdf10, and Nell1) by qPCR. The most enriched functional gene-networks included those classified as regulating cellular development and metabolism. CONCLUSION: These results suggest that loss of the maternal Klf14 locus in the mouse placenta acts results in changes in gene expression patterns that modulate placental growth.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Placentação , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Redes Reguladoras de Genes , Impressão Genômica , Fator 10 de Diferenciação de Crescimento/metabolismo , Camundongos Knockout , Gravidez , Proteínas Recombinantes/metabolismo
8.
PLoS One ; 10(8): e0135202, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26241757

RESUMO

Mutations in imprinted genes or their imprint control regions (ICRs) produce changes in imprinted gene expression and distinct abnormalities in placental structure, indicating the importance of genomic imprinting to placental development. We have recently shown that a very broad spectrum of placental abnormalities associated with altered imprinted gene expression occurs in the absence of the oocyte-derived DNMT1o cytosine methyltransferase, which normally maintains parent-specific imprinted methylation during preimplantation. The absence of DNMT1o partially reduces inherited imprinted methylation while retaining the genetic integrity of imprinted genes and their ICRs. Using this novel system, we undertook a broad and inclusive approach to identifying key ICRs involved in placental development by correlating loss of imprinted DNA methylation with abnormal placental phenotypes in a mid-gestation window (E12.5-E15.5). To these ends we measured DNA CpG methylation at 15 imprinted gametic differentially methylated domains (gDMDs) that overlap known ICRs using EpiTYPER-mass array technology, and linked these epigenetic measurements to histomorphological defects. Methylation of some imprinted gDMDs, most notably Dlk1, was nearly normal in mid-gestation DNMT1o-deficient placentas, consistent with the notion that cells having lost methylation on these DMDs do not contribute significantly to placental development. Most imprinted gDMDs however showed a wide range of methylation loss among DNMT1o-deficient placentas. Two striking associations were observed. First, loss of DNA methylation at the Peg10 imprinted gDMD associated with decreased embryonic viability and decreased labyrinthine volume. Second, loss of methylation at the Kcnq1 imprinted gDMD was strongly associated with trophoblast giant cell (TGC) expansion. We conclude that the Peg10 and Kcnq1 ICRs are key regulators of mid-gestation placental function.


Assuntos
Impressão Genômica/fisiologia , Canal de Potássio KCNQ1/fisiologia , Proteínas Nucleares/fisiologia , Placenta/anormalidades , Fatores de Transcrição/fisiologia , Animais , Proteínas Reguladoras de Apoptose , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/deficiência , Metilação de DNA , Proteínas de Ligação a DNA , Feminino , Morte Fetal/etiologia , Idade Gestacional , Canal de Potássio KCNQ1/genética , Tamanho da Ninhada de Vivíparos , Camundongos , Camundongos da Linhagem 129 , Proteínas Nucleares/genética , Fenótipo , Gravidez , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA