Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(9): 1915-1925, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634811

RESUMO

Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of ß-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.


Assuntos
Amiloide , Calgranulina A , Calgranulina B , Complexo Antígeno L1 Leucocitário , Calgranulina B/metabolismo , Calgranulina A/metabolismo , Complexo Antígeno L1 Leucocitário/metabolismo , Amiloide/metabolismo , Humanos , Agregados Proteicos/fisiologia , Agregados Proteicos/efeitos dos fármacos , Cálcio/metabolismo , Estrutura Secundária de Proteína
2.
J Phys Chem B ; 127(29): 6470-6478, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37452775

RESUMO

Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.


Assuntos
DNA , Desoxirribonucleases de Sítio Específico do Tipo II , Enzimas de Restrição do DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , DNA/química
3.
Langmuir ; 37(11): 3428-3437, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689355

RESUMO

Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.


Assuntos
DNA , Imagem Individual de Molécula , Ácidos Nucleicos Imobilizados , Nanotecnologia , Proteínas
4.
Langmuir ; 35(17): 5921-5930, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30955328

RESUMO

The DNA Curtains assay is a recently developed experimental platform for protein-DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA-protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single- and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single- and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA-protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.


Assuntos
DNA/química , Ácidos Nucleicos Imobilizados/química , Microfluídica/métodos , Biotina/química , Biotina/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Microscopia de Fluorescência , Compostos Orgânicos/química , Estudo de Prova de Conceito , Ligação Proteica , Estreptavidina/química , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA