Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Magn Reson Med ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573932

RESUMO

PURPOSE: Gene-expression reporter systems, such as green fluorescent protein, have been instrumental to understanding biological processes in living organisms at organ system, tissue, cell, and molecular scales. More than 30 years of work on developing MRI-visible gene-expression reporter systems has resulted in a variety of clever application-specific methods. However, these techniques have not yet been widely adopted, so a general-purpose expression reporter is still required. Here, we demonstrate that the manganese ion transporter Zip14 is an in vivo MRI-visible, flexible, and robust gene-expression reporter to meet this need. METHODS: Plasmid constructs consisting of a cell type-specific promoter, gene coding for human Zip14, and a histology-visible tag were packaged into adeno-associated viruses. These viruses were intracranially injected into the mouse brain. Serial in vivo MRI was performed using a vendor-supplied 3D-MPRAGE sequence. No additional contrast agents were administered. Animals were sacrificed after the last imaging timepoint for immunohistological validation. RESULTS: Neuron-specific overexpression of Zip14 produced substantial and long-lasting changes in MRI contrast. Using appropriate viruses enabled both anterograde and retrograde neural tracing. Expression of Zip14 in astrocytes also enabled MRI of glia populations in the living mammalian brain. CONCLUSIONS: The flexibility of this system as an MRI-visible gene-expression reporter will enable many applications of serial, high-resolution imaging of gene expression for basic science and therapy development.

2.
ACS Sens ; 9(1): 42-51, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113475

RESUMO

Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure. These geometrically encoded magnetic sensors (GEMS) enable MRI-based sensing via environmentally induced changes to their geometry and their corresponding RF resonance. Previously, GEMS have been made using thin-film lithography techniques in a cleanroom environment. While these approaches offer precise control of the microstructure, they can be a limitation for researchers who do not have cleanroom access or microfabrication expertise. Here, an alternative approach for GEMS fabrication based on soft lithography is introduced. The fabrication scheme uses cheap, accessible materials and simple chemistry to produce shaped magnetic hydrogel microparticles with multispectral MRI contrast properties. The microparticles can be used as sensors by fabricating them out of shape-reconfigurable, "smart" hydrogels. The change in shape causes a corresponding shift in the resonance of the GEMS, producing an MRI-addressable readout of the microenvironment. Proof-of-principle experiments showing a multispectral response to pH change with cylindrical shell-shaped magnetogel GEMS are presented.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Prótons , Magnetismo
3.
Neuroimage ; 276: 120198, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37245561

RESUMO

Magnetic Resonance Imaging (MRI) resolution continues to improve, making it important to understand the cellular basis for different MRI contrast mechanisms. Manganese-enhanced MRI (MEMRI) produces layer-specific contrast throughout the brain enabling in vivo visualization of cellular cytoarchitecture, particularly in the cerebellum. Due to the unique geometry of the cerebellum, especially near the midline, 2D MEMRI images can be acquired from a relatively thick slice by averaging through areas of uniform morphology and cytoarchitecture to produce very high-resolution visualization of sagittal planes. In such images, MEMRI hyperintensity is uniform in thickness throughout the anterior-posterior axis of sagittal sections and is centrally located in the cerebellar cortex. These signal features suggested that the Purkinje cell layer, which houses the cell bodies of the Purkinje cells and the Bergmann glia, is the source of hyperintensity. Despite this circumstantial evidence, the cellular source of MRI contrast has been difficult to define. In this study, we quantified the effects of selective ablation of Purkinje cells or Bergmann glia on cerebellar MEMRI signal to determine whether signal could be assigned to one cell type. We found that the Purkinje cells, not the Bergmann glia, are the primary of source of the enhancement in the Purkinje cell layer. This cell-ablation strategy should be useful for determining the cell specificity of other MRI contrast mechanisms.


Assuntos
Cerebelo , Manganês , Humanos , Manganês/metabolismo , Cerebelo/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Neuroglia/metabolismo , Imageamento por Ressonância Magnética/métodos
4.
Commun Biol ; 6(1): 298, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944712

RESUMO

Cerebral blood flow (CBF) is widely used to assess brain function. However, most preclinical CBF studies have been performed under anesthesia, which confounds findings. High spatiotemporal-resolution CBF imaging of awake animals is challenging due to motion artifacts and background noise, particularly for Doppler-based flow imaging. Here, we report ultrahigh-resolution optical coherence Doppler tomography (µODT) for 3D imaging of CBF velocity (CBFv) dynamics in awake mice by developing self-supervised deep-learning for effective image denoising and motion-artifact removal. We compare cortical CBFv in awake vs. anesthetized mice and their dynamic responses in arteriolar, venular and capillary networks to acute cocaine (1 mg/kg, i.v.), a highly addictive drug associated with neurovascular toxicity. Compared with awake, isoflurane (2-2.5%) induces vasodilation and increases CBFv within 2-4 min, whereas dexmedetomidine (0.025 mg/kg, i.p.) does not change vessel diameters nor flow. Acute cocaine decreases CBFv to the same extent in dexmedetomidine and awake states, whereas decreases are larger under isoflurane, suggesting that isoflurane-induced vasodilation might have facilitated detection of cocaine-induced vasoconstriction. Awake mice after chronic cocaine show severe vasoconstriction, CBFv decreases and vascular adaptations with extended diving arteriolar/venular vessels that prioritize blood supply to deeper cortical capillaries. The 3D imaging platform we present provides a powerful tool to study dynamic changes in vessel diameters and morphology alongside CBFv networks in the brain of awake animals that can advance our understanding of the effects of drugs and disease conditions (ischemia, tumors, wound healing).


Assuntos
Cocaína , Dexmedetomidina , Isoflurano , Camundongos , Animais , Isoflurano/farmacologia , Imageamento Tridimensional/métodos , Vigília , Dexmedetomidina/farmacologia , Circulação Cerebrovascular/fisiologia , Tomografia de Coerência Óptica/métodos , Cocaína/farmacologia
5.
ACS Chem Neurosci ; 13(18): 2674-2680, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36040317

RESUMO

One of the most important goals of brain imaging is to define the anatomical connections within the brain. In addition to revealing normal circuitry, studies of neural connections and neuronal transport can show rewiring and degeneration following brain injury and diseases. In this work, a highly sensitive magnetic resonance imaging (MRI)-visible neural tracer that can be used to visualize brain connectivity in vivo is developed. It is based on an oligopeptide with gadolinium chelates appended to the peptide backbone. This peptide construct is a sensitive MRI contrast agent that was conjugated to the classical neurotracer, Cholera-toxin Subunit-B. Injection of this probe enabled it to be used to trace neural connections in vivo. This complements other MRI tracing techniques such as diffusion tensor imaging and manganese-enhanced MRI for neural tracing.


Assuntos
Meios de Contraste , Gadolínio , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Gadolínio/química , Compostos Heterocíclicos , Imageamento por Ressonância Magnética/métodos , Manganês , Sondas Moleculares , Oligopeptídeos , Compostos Organometálicos
6.
Elife ; 112022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35510986

RESUMO

Central nervous system (CNS) infections are a major cause of human morbidity and mortality worldwide. Even patients that survive, CNS infections can have lasting neurological dysfunction resulting from immune and pathogen induced pathology. Developing approaches to noninvasively track pathology and immunity in the infected CNS is crucial for patient management and development of new therapeutics. Here, we develop novel MRI-based approaches to monitor virus-specific CD8+ T cells and their relationship to cerebrovascular pathology in the living brain. We studied a relevant murine model in which a neurotropic virus (vesicular stomatitis virus) was introduced intranasally and then entered the brain via olfactory sensory neurons - a route exploited by many pathogens in humans. Using T2*-weighted high-resolution MRI, we identified small cerebral microbleeds as an early form of pathology associated with viral entry into the brain. Mechanistically, these microbleeds occurred in the absence of peripheral immune cells and were associated with infection of vascular endothelial cells. We monitored the adaptive response to this infection by developing methods to iron label and track individual virus specific CD8+ T cells by MRI. Transferred antiviral T cells were detected in the brain within a day of infection and were able to reduce cerebral microbleeds. These data demonstrate the utility of MRI in detecting the earliest pathological events in the virally infected CNS as well as the therapeutic potential of antiviral T cells in mitigating this pathology.


Assuntos
Antivirais , Células Endoteliais , Animais , Encéfalo , Hemorragia Cerebral , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL
7.
Hum Brain Mapp ; 43(5): 1766-1782, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957633

RESUMO

Outliers in neuroimaging represent spurious data or the data of unusual phenotypes that deserve special attention such as clinical follow-up. Outliers have usually been detected in a supervised or semi-supervised manner for labeled neuroimaging cohorts. There has been much less work using unsupervised outlier detection on large unlabeled cohorts like the UK Biobank brain imaging dataset. Given its large sample size, rare imaging phenotypes within this unique cohort are of interest, as they are often clinically relevant and could be informative for discovering new processes. Here, we developed a two-level outlier detection and screening methodology to characterize individual outliers from the multimodal MRI dataset of more than 15,000 UK Biobank subjects. In primary screening, using brain ventricles, white matter, cortical thickness, and functional connectivity-based imaging phenotypes, every subject was parameterized with an outlier score per imaging phenotype. Outlier scores of these imaging phenotypes had good-to-excellent test-retest reliability, with the exception of resting-state functional connectivity (RSFC). Due to the low reliability of RSFC outlier scores, RSFC outliers were excluded from further individual-level outlier screening. In secondary screening, the extreme outliers (1,026 subjects) were examined individually, and those arising from data collection/processing errors were eliminated. A representative subgroup of 120 subjects from the remaining non-artifactual outliers were radiologically reviewed, and radiological findings were identified in 97.5% of them. This study establishes an unsupervised framework for investigating rare individual imaging phenotypes within a large neuroimaging cohort.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Fenótipo , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 87(4): 1720-1730, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34775619

RESUMO

PURPOSE: The sensitivity of pseudo-continuous arterial spin labeling (PCASL) to off-resonance effects (ΔB0 ) is a major limitation at ultra-high field (≥7T). The aim of this study was to assess the effectiveness of different PCASL ΔB0 compensation methods at 7T and measure the labeling efficiency with off-resonance correction. THEORY AND METHODS: Phase offset errors induced by ΔB0 at the feeding arteries can be compensated by adding an extra radiofrequency (RF) phase increment and transverse gradient blips into the PCASL RF pulse train. The effectiveness of an average field correction (AVGcor), a vessel-specific field-map-based correction (FMcor) and a vessel-specific prescan-based correction (PScor) were compared at 7T. After correction, the PCASL labeling efficiency was directly measured in feeding arteries downstream from the labeling location. RESULTS: The perfusion signal was more uniform throughout the brain after off-resonance correction. Whole-brain average perfusion signal increased by a factor of 2.4, 2.5, and 2.1, respectively, with AVGcor, FMcor and PScor compared to acquisitions without correction. With off-resonance correction, the maximum labeling efficiency was ~0.68 at mean B1 (B1mean ) of 0.70 µT when using a mean gradient (Gmean ) of 0.25 mT/m. CONCLUSION: Either a prescan or a field map can be used to correct for off-resonance effects and retrieve a good brain perfusion signal at 7T. Although the three methods performed well in this study, FMcor may be better suited for patient studies because it accounted for vessel-specific ΔB0 variations. Further improvements in image quality will be possible by optimizing the labeling efficiency with advanced hardware and software while satisfying specific absorption rate constraints.


Assuntos
Artérias , Circulação Cerebrovascular , Artérias/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Humanos , Angiografia por Ressonância Magnética/métodos , Perfusão , Marcadores de Spin
9.
Quant Imaging Med Surg ; 11(3): 998-1009, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654672

RESUMO

BACKGROUND: Genetically encoded calcium indicators (GECIs), especially the GCaMP-based green fluorescence GECIs have been widely used for in vivo detection of neuronal activity in rodents by measuring intracellular neuronal Ca2+ changes. More recently, jRGECO1a, a red shifted GECI, has been reported to detect neuronal Ca2+ activation. This opens the possibility of using dual-color GECIs for simultaneous interrogation of different cell populations. However, there has been no report to compare the functional difference between these two GECIs for in vivo imaging. Here, a comparative study is reported on neuronal responses to sensory stimulation using GCaMP6f and jRGECO1a that were virally delivered into the neurons in the somatosensory cortex of two different groups of animals, respectively. METHODS: GCaMP6f and jRGECO1a GECI were virally delivered to sensory cortex. After 3-4 weeks, the animals were imaged to capture the spatiotemporal changes of neuronal Ca2+ and the hemodynamic responses to forepaw electrical stimulation (0.3 mA, 0.3 ms/pulse, 0.03 Hz). The stimulation-evoked neuronal Ca2+ transients expressed with GCaMP6f or jRGECO1a were recorded during the baseline period and after an acute cocaine administration (1 mg/kg, i.v.). RESULTS: Histology confirmed that the efficiency of jRGECO1a and GCaMP6f expression into the cortical neurons was similar, i.e., 34%±3% and 32.7%±1.6%, respectively. Our imaging in vivo showed that the hemodynamic responses to the stimulation were the same between jRGECO1a and GCaMP6f expressed groups. Although the stimulation-evoked fluorescence change (∆F/F) and the time-to-peak of the neuronal Ca2+ transients were not significantly different between these two indicators, the full-width-half-maximum (FWHM) duration of the ∆F/F rise in the jRGECO1a-expressed group (0.16±0.02 s) was ~50 ms or 46% longer than that of the GCaMP6f group (0.11±0.003 s), indicating a longer recovery time in jRGECO1a than in GCaMP6f transients (P<0.01). This is likely due to the longer off rate of jRGECO1a than that of GCaMP6f. After cocaine, the time-to-peak of Ca2+ transients was delayed and their FWHM duration was prolonged for both expression groups, indicating that these are cocaine's effects on neuronal Ca2+ signaling and not artifacts due to the property differences of the GCEIs. CONCLUSIONS: This study shows that both jRGECO1a and GCaMP6f have sufficient sensitivity for tracking single-stimulation-evoked Ca2+ transients to detect neuronal activities from the brain. Since these GECIs are emitted at the different wavelengths, it will be possible to use them together to characterize the activity of different cell types (e.g., neurons and astrocytes) to study brain activation and brain functional changes in normal or diseased brains.

10.
NMR Biomed ; 34(4): e4476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538073

RESUMO

Contrast agents improve clinical and basic research MRI. The manganese ion (Mn2+ ) is an essential, endogenous metal found in cells and it enhances MRI contrast because of its paramagnetic properties. Manganese-enhanced MRI (MEMRI) has been widely used to image healthy and diseased states of the body and the brain in a variety of animal models. There has also been some work in translating the useful properties of MEMRI to humans. Mn2+ accumulates in brain regions with high neural activity and enters cells via voltage-dependent channels that flux calcium (Ca2+ ). In addition, metal transporters for zinc (Zn2+ ) and iron (Fe2+ ) can also transport Mn2+ . There is also transfer through channels specific for Mn2+ . Although Mn2+ accumulates in many tissues including brain, the mechanisms and preferences of its mode of entry into cells are not well characterized. The current study used MRI on living organotypic hippocampal slice cultures to detect which transport mechanisms are preferentially used by Mn2+ to enter cells. The use of slice culture overcomes the presence of the blood brain barrier, which limits inferences made with studies of the intact brain in vivo. A range of Mn2+ concentrations were used and their effects on neural activity were assessed to avoid using interfering doses of Mn2+ . Zn2+ and Fe2+ were the most efficient competitors for Mn2+ uptake into the cultured slices, while the presence of Ca2+ or Ca2+ channel antagonists had a more moderate effect. Reducing slice activity via excitatory receptor antagonists was also effective at lowering Mn2+ uptake. In conclusion, a hierarchy of those agents which influence Mn2+ uptake was established to enhance understanding of how Mn2+ enters cells in a cultured slice preparation.


Assuntos
Hipocampo/metabolismo , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Manganês/farmacocinética , Animais , Canais de Cálcio/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/fisiologia , Razão Sinal-Ruído , Sinapses/fisiologia
11.
Magn Reson Med ; 85(1): 506-517, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638424

RESUMO

PURPOSE: Demonstrating multifield and inverse contrast switching of magnetocaloric high contrast ratio MRI labels that either have increasing or decreasing moment versus temperature slopes depending on the material at physiological temperatures and different MRI magnetic field strengths. METHODS: Two iron-rhodium samples of different purity (99% and 99.9%) and a lanthanum-iron-silicon sample were obtained from commercial vendors. Temperature and magnetic field-dependent magnetic moment measurements of the samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of different iron-rhodium and lanthanum-iron-silicon samples were performed on 3 different MRI scanners at 1 Tesla (T), 4.7T, and 7T. RESULTS: Sharp, first-order magnetic phase transition of each iron-rhodium sample at a physiologically relevant temperature (~37°C) but at different MRI magnetic fields (1T, 4.7T, and 7T, depending on the sample) showed clear image contrast changes in temperature-dependent MRI. Iron-rhodium and lanthanum-iron-silicon samples with sharp, first-order magnetic phase transitions at the same MRI field of 1T and physiological temperature of 37°C, but with positive and negative slope of magnetization versus temperature, respectively, showed clear inverse contrast image changes. Temperature-dependent MRI on individual microparticle samples of lanthanum-iron-silicon also showed sharp image contrast changes. CONCLUSION: Magnetocaloric materials of different purity and composition were demonstrated to act as diverse high contrast ratio switchable MRI contrast agents. Thus, we show that a range of magnetocaloric materials can be optimized for unique image contrast response under MRI-appropriate conditions at physiological temperatures and be controllably switched in situ.


Assuntos
Imageamento por Ressonância Magnética , Magnetismo , Ferro , Campos Magnéticos , Temperatura
13.
J Neurosci ; 40(40): 7714-7723, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32913109

RESUMO

Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.


Assuntos
Corpo Caloso/fisiologia , Plasticidade Neuronal , Córtex Somatossensorial/fisiologia , Vibrissas/inervação , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Corpo Caloso/citologia , Feminino , Lateralidade Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Somatossensorial/citologia
14.
Neuroimage ; 223: 117285, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828923

RESUMO

PURPOSE: To perform magnetic resonance microscopy (MRM) on human cortex and a cortical lesion as well as the adjacent normal appearing white matter. To shed light on the origins of MRI contrast by comparison with histochemical and immunostaining. METHODS: 3D MRM at a nominal isotropic resolution of 15 and 18 µm was performed on 2 blocks of tissue from the brain of a 77-year-old man who had MS for 47 years. One block contained normal appearing cortical gray matter (CN block) and adjacent normal appearing white matter (NAWM), and the other also included a cortical lesion (CL block). Postmortem ex-vivo MRI was performed at 11.7T using a custom solenoid coil and T2*-weighted 3D GRE sequence. Histochemical and immunostaining were done after paraffin embedding for iron, myelin, oligodendrocytes, neurons, blood vessels, macrophages and microglia, and astrocytes. RESULTS: MRM could identify individual iron-laden oligodendrocytes with high sensitivity (70% decrease in signal compared to surrounding) in CN and CL blocks, as well as some iron-laden activated macrophages and microglia. Iron-deficient oligodendrocytes seemed to cause relative increase in MRI signal within the cortical lesion. High concentration of myelin in the white matter was primarily responsible for its hypointense appearance relative to the cortex, however, signal variations within NAWM could be attributed to changes in density of iron-laden oligodendrocytes. CONCLUSION: Changes in iron accumulation within cells gave rise to imaging contrast seen between cortical lesions and normal cortex, as well as the patchy signal in NAWM. Densely packed myelin and collagen deposition also contributed to MRM signal changes. Even though we studied only one block each from normal appearing and cortical lesions, such studies can help better understand the origins of histopathological and microstructural correlates of MRI signal changes in multiple sclerosis and contextualize the interpretation of lower-resolution in vivo MRI scans.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Técnicas de Preparação Histocitológica/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neurônios/patologia , Idoso , Química Encefálica , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Ferro , Imageamento por Ressonância Magnética , Masculino , Microscopia/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
15.
Cereb Cortex ; 30(11): 5885-5898, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556241

RESUMO

Optogenetically driven manipulation of circuit-specific activity enables causality studies, but its global brain-wide effect is rarely reported. Here, we applied simultaneous functional magnetic resonance imaging (fMRI) and calcium recording with optogenetic activation of the corpus callosum (CC) connecting barrel cortices (BC). Robust positive BOLD was detected in the ipsilateral BC due to antidromic activity, spreading to the ipsilateral motor cortex (MC), and posterior thalamus (PO). In the orthodromic target, positive BOLD was reliably evoked by 2 Hz light pulses, whereas 40 Hz light pulses led to reduced calcium, indicative of CC-mediated inhibition. This presumed optogenetic CC-mediated inhibition was further elucidated by pairing light pulses with whisker stimulation at varied interstimulus intervals. Whisker-induced positive BOLD and calcium signals were reduced at intervals of 50/100 ms. The calcium-amplitude-modulation-based correlation with whole-brain fMRI signal revealed that the inhibitory effects spread to contralateral BC, ipsilateral MC, and PO. This work raises the need for fMRI to elucidate the brain-wide network activation in response to optogenetic stimulation.


Assuntos
Mapeamento Encefálico/métodos , Corpo Caloso/fisiologia , Imageamento por Ressonância Magnética/métodos , Optogenética/métodos , Animais , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Ratos
16.
Neuroimage ; 210: 116554, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972283

RESUMO

Spontaneous brain activity has been widely used to map brain connectivity. The interactions between task-evoked brain responses and the spontaneous cortical oscillations, especially within the low frequency range of ~0.1 â€‹Hz, are not fully understood. Trial-to-trial variabilities in brain's response to sensory stimuli and the ability for brain to detect under noisy conditions suggest an appreciable impact of the brain state. Using a multimodality imaging platform, we simultaneously imaged neuronal Ca2+ and cerebral hemodynamics at baseline and in response to single-pulse forepaw stimuli in rat's somatosensory cortex. The high sensitivity of this system enables detection of responses to very weak and strong stimuli and real time determination of low frequency oscillations without averaging. Results show that the ongoing neuronal oscillations inversely modulate Ca2+ transients evoked by sensory stimuli. High intensity stimuli reset the spontaneous neuronal oscillations to an unpreferable excitability following the stimulus. Cerebral hemodynamic responses also inversely interact with the spontaneous hemodynamic oscillations, correlating with the neuronal Ca2+ transient changes. The results reveal competing interactions between spontaneous oscillations and stimulation-evoked brain activities in somatosensory cortex and the resultant hemodynamics.


Assuntos
Ondas Encefálicas/fisiologia , Cálcio , Potenciais Somatossensoriais Evocados/fisiologia , Neuroimagem Funcional/métodos , Acoplamento Neurovascular/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Membro Anterior , Imuno-Histoquímica , Masculino , Imagem Multimodal , Imagem Óptica , Estimulação Física , Ratos , Ratos Sprague-Dawley
17.
Radiology ; 293(2): 384-393, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31573398

RESUMO

Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.


Assuntos
Cateterismo , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Adulto , Artefatos , Cateterismo Cardíaco/instrumentação , Meios de Contraste , Desenho de Equipamento , Feminino , Humanos , Imagem por Ressonância Magnética Intervencionista/instrumentação , Metais , Razão Sinal-Ruído
18.
Proc Natl Acad Sci U S A ; 116(13): 6391-6396, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30846552

RESUMO

Central or peripheral injury causes reorganization of the brain's connections and functions. A striking change observed after unilateral stroke or amputation is a recruitment of bilateral cortical responses to sensation or movement of the unaffected peripheral area. The mechanisms underlying this phenomenon are described in a mouse model of unilateral whisker deprivation. Stimulation of intact whiskers yields a bilateral blood-oxygen-level-dependent fMRI response in somatosensory barrel cortex. Whole-cell electrophysiology demonstrated that the intact barrel cortex selectively strengthens callosal synapses to layer 5 neurons in the deprived cortex. These synapses have larger AMPA receptor- and NMDA receptor-mediated events. These factors contribute to a maximally potentiated callosal synapse. This potentiation occludes long-term potentiation, which could be rescued, to some extent, with prior long-term depression induction. Excitability and excitation/inhibition balance were altered in a manner consistent with cell-specific callosal changes and support a shift in the overall state of the cortex. This is a demonstration of a cell-specific, synaptic mechanism underlying interhemispheric cortical reorganization.


Assuntos
Corpo Caloso/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Encéfalo , Potenciação de Longa Duração/fisiologia , Imageamento por Ressonância Magnética/métodos , Camundongos , Receptores de N-Metil-D-Aspartato , Sensação/fisiologia , Privação Sensorial/fisiologia , Sinapses/fisiologia , Vibrissas/fisiologia
19.
Magn Reson Med ; 81(4): 2238-2246, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30474159

RESUMO

PURPOSE: To develop switchable and tunable labels with high contrast ratio for MRI using magnetocaloric materials that have sharp first-order magnetic phase transitions at physiological temperatures and typical MRI magnetic field strengths. METHODS: A prototypical magnetocaloric material iron-rhodium (FeRh) was prepared by melt mixing, high-temperature annealing, and ice-water quenching. Temperature- and magnetic field-dependent magnetization measurements of wire-cut FeRh samples were performed on a vibrating sample magnetometer. Temperature-dependent MRI of FeRh samples was performed on a 4.7T MRI. RESULTS: Temperature-dependent MRI clearly demonstrated image contrast changes due to the sharp magnetic state transition of the FeRh samples in the MRI magnetic field (4.7T) and at a physiologically relevant temperature (~37°C). CONCLUSION: A magnetocaloric material, FeRh, was demonstrated to act as a high contrast ratio switchable MRI contrast agent due to its sharp first-order magnetic phase transition in the DC magnetic field of MRI and at physiologically relevant temperatures. A wide range of magnetocaloric materials are available that can be tuned by materials science techniques to optimize their response under MRI-appropriate conditions and be controllably switched in situ with temperature, magnetic field, or a combination of both.


Assuntos
Meios de Contraste/química , Campos Magnéticos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Temperatura Alta , Ferro , Magnetismo , Teste de Materiais , Movimento (Física) , Ródio , Temperatura , Vibração
20.
Cell Rep ; 23(13): 3878-3890, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949771

RESUMO

The role of astrocytes in neurovascular coupling (NVC) is unclear. Here, we applied a multimodality imaging approach to concomitantly measure synchronized neuronal or astrocytic Ca2+ and hemodynamic changes in the mouse somatosensory cortex at rest and during sensory electrical stimulation. Strikingly, we found that low-frequency stimulation (0.3-1 Hz), which consistently evokes fast neuronal Ca2+ transients (6.0 ± 2.7 ms latency) that always precede vascular responses, does not always elicit astrocytic Ca2+ transients (313 ± 65 ms latency). However, the magnitude of the hemodynamic response is increased when astrocytic transients occur, suggesting a facilitatory role of astrocytes in NVC. High-frequency stimulation (5-10 Hz) consistently evokes a large, delayed astrocytic Ca2+ accumulation (3.48 ± 0.09 s latency) that is temporarily associated with vasoconstriction, suggesting a role for astrocytes in resetting NVC. At rest, neuronal, but not astrocytic, Ca2+ fluctuations correlate with hemodynamic low-frequency oscillations. Taken together, these results support a role for astrocytes in modulating, but not triggering, NVC.


Assuntos
Cálcio/metabolismo , Acoplamento Neurovascular , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Estimulação Elétrica , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Imagem com Lapso de Tempo , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA