Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 114(11): 2528-2538, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688186

RESUMO

Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Etanol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/fisiologia , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Reatores Biológicos/microbiologia , Fermentação/fisiologia , Redes e Vias Metabólicas/genética , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/citologia , Ácido Betulínico
2.
Mol Pharm ; 11(11): 4189-98, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25295846

RESUMO

The incorporation of poorly soluble active pharmaceutical ingredients (APIs) into excipients (e.g., polymers) to formulate an amorphous solid dispersion is a promising strategy to improve the oral bioavailability of the API. The application of copolymer excipients allows access to combinations of different monomers and thus to the design of excipients to improve solid-dispersion properties. In this work, the thermodynamic phase behavior of solid dispersions was investigated as a function of the API, type of monomer, and copolymer composition. The glass-transition temperatures and API solubilities in the solid dispersions of naproxen and indomethacin in polyvinylpyrrolidone, polyvinyl acetate, and copolymers with different weight fractions of vinylpyrrolidone and vinyl actetate were investigated. It is shown that the thermodynamic phase behavior of API/copolymer solid dispersions is a function of monomer type and copolymer composition. This effect was also predicted by using the perturbed-chain statistical associating fluid theory (PC-SAFT). The glass-transition temperature of the solid dispersions was calculated with the Gordon-Taylor equation.


Assuntos
Excipientes/química , Vidro/química , Indometacina/química , Preparações Farmacêuticas/química , Polímeros/química , Povidona/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Estabilidade de Medicamentos , Transição de Fase , Solubilidade , Termodinâmica , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA