Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202275

RESUMO

Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) opens new possibilities in multimodal multiparametric (m2p) image analyses. But even the simultaneous acquisition of positron emission tomography (PET) and magnetic resonance imaging (MRI) does not guarantee perfect voxel-by-voxel co-registration due to organs and distortions, especially in diffusion-weighted imaging (DWI), which would be, however, crucial to derive biologically meaningful information. Thus, our aim was to optimize fusion and voxel-wise analyses of DWI and standardized uptake values (SUVs) using a novel software for m2p analyses. Using research software, we evaluated the precision of image co-registration and voxel-wise analyses including the rigid and elastic 3D registration of DWI and [18F]-Fluorodeoxyglucose (FDG)-PET from an integrated PET/MR system. We analyzed DWI distortions with a volume-preserving constraint in three different 3D-printed phantom models. A total of 12 PET/MR-DWI clinical datasets (bronchial carcinoma patients) were referenced to the T1 weighted-DIXON sequence. Back mapping of scatterplots and voxel-wise registration was performed and compared to the non-optimized datasets. Fusion was rated using a 5-point Likert scale. Using the 3D-elastic co-registration algorithm, geometric shapes were restored in phantom measurements; the measured ADC values did not change significantly (F = 1.12, p = 0.34). Reader assessment showed a significant improvement in fusion precision for DWI and morphological landmarks in the 3D-registered datasets (4.3 ± 0.2 vs. 4.6 ± 0.2, p = 0.009). Most pronounced differences were noted for the chest wall (p = 0.006), tumor (p = 0.007), and skin contour (p = 0.014). Co-registration increased the number of plausible ADC and SUV combinations by 25%. The volume-preserving elastic 3D registration of DWI significantly improved the precision of fusion with anatomical sequences in phantom and clinical datasets. The research software allowed for a voxel-wise analysis and visualization of [18F]FDG-PET/MR data as a "combined diffusivity-metabolic index" (cDMI). The clinical value of the optimized PET/MR biomarker can thus be tested in future PET/MR studies.

2.
Diagnostics (Basel) ; 13(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37371024

RESUMO

PURPOSE: To implement the technical feasibility of an AI-based software prototype optimized for the detection of COVID-19 pneumonia in CT datasets of the lung and the differentiation between other etiologies of pneumonia. METHODS: This single-center retrospective case-control-study consecutively yielded 144 patients (58 female, mean age 57.72 ± 18.25 y) with CT datasets of the lung. Subgroups including confirmed bacterial (n = 24, 16.6%), viral (n = 52, 36.1%), or fungal (n = 25, 16.6%) pneumonia and (n = 43, 30.7%) patients without detected pneumonia (comparison group) were evaluated using the AI-based Pneumonia Analysis prototype. Scoring (extent, etiology) was compared to reader assessment. RESULTS: The software achieved an optimal sensitivity of 80.8% with a specificity of 50% for the detection of COVID-19; however, the human radiologist achieved optimal sensitivity of 80.8% and a specificity of 97.2%. The mean postprocessing time was 7.61 ± 4.22 min. The use of a contrast agent did not influence the results of the software (p = 0.81). The mean evaluated COVID-19 probability is 0.80 ± 0.36 significantly higher in COVID-19 patients than in patients with fungal pneumonia (p < 0.05) and bacterial pneumonia (p < 0.001). The mean percentage of opacity (PO) and percentage of high opacity (PHO ≥ -200 HU) were significantly higher in COVID-19 patients than in healthy patients. However, the total mean HU in COVID-19 patients was -679.57 ± 112.72, which is significantly higher than in the healthy control group (p < 0.001). CONCLUSION: The detection and quantification of pneumonia beyond the primarily trained COVID-19 datasets is possible and shows comparable results for COVID-19 pneumonia to an experienced reader. The advantages are the fast, automated segmentation and quantification of the pneumonia foci.

3.
J Phys Chem Lett ; 8(3): 690-695, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28107011

RESUMO

In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA