Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(3): 462-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648766

RESUMO

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer. However, during the HIV-1 replicative cycle, integrase is responsible not only for the integration stage, it is also involved in reverse transcription and is necessary at the stage of capsid formation of the newly formed virions. It has been suggested that HIV-1 integrase is a structurally dynamic protein and its biological functions depend on its structure. Accordingly, studying interactions between the domains of integrase that provide its tetrameric structure is important for understanding its multiple functions. In this work, we investigated the role of three amino acids of the catalytic domain, I182, R187, and K188, located in the contact region of two integrase dimers in the tetramer structure, in reverse transcription and integration. It has been shown that the R187 residue is extremely important for formation of the correct integrase structure, which is necessary at all stages of its functional activity. The I182 residue is necessary for successful integration and is not important for reverse transcription, while the K188 residue, on the contrary, is involved in formation of the integrase structure, which is important for the effective reverse transcription.


Assuntos
Domínio Catalítico , Integrase de HIV , HIV-1 , Transcrição Reversa , Integração Viral , Integrase de HIV/metabolismo , Integrase de HIV/química , Integrase de HIV/genética , HIV-1/enzimologia , Humanos
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139188

RESUMO

Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.


Assuntos
HIV-1 , HIV-1/fisiologia , Autoantígeno Ku/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA , Integrases/metabolismo , Reparo do DNA por Junção de Extremidades
3.
Res Sq ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790553

RESUMO

The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.

4.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37333393

RESUMO

The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.

5.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371496

RESUMO

The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme-a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of C-methylated analogs of Spd. The biochemical properties of these compounds and the possibility for the regulation of their activity by moving a methyl group along the polyamine backbone and by changing the stereochemistry of the chiral center(s) are discussed.


Assuntos
Poliaminas Biogênicas , Espermidina , Poliaminas/metabolismo , Espermina/metabolismo , Homeostase
6.
JACC Clin Electrophysiol ; 9(1): 28-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37166222

RESUMO

BACKGROUND: Venous ethanol ablation (VEA) can be effective for ventricular arrhythmias from the left ventricular summit (LVS); however, there are concerns about excessive ablation by VEA. OBJECTIVES: The purpose of this study was to delineate and quantify the location, extent, and evolution of ablated tissue after VEA as an intramural ablation technique in the LVS. METHODS: VEA was performed in 59 patients with LVS ventricular arrhythmias. Targeted intramural veins were selected by electrograms from a 2F octapolar catheter or by guide-wire unipolar signals. Median ethanol delivered was 4 mL (IQR: 4-7 mL). Ablated areas were estimated intraprocedurally as increased echogenicity on intracardiac echocardiography (ICE) and incorporated into 3-dimensional maps. In 44 patients, late gadolinium enhancement cardiac magnetic resonance (CMR) imaged VEA scar and its evolution. RESULTS: ICE-demonstrated increased intramural echogenicity (median volume of 2 mL; IQR: 1.7-4.3) at the targeted region of the 3-dimensional maps. Post-ethanol CMR showed intramural scar of 2.5 mL (IQR: 2.1-3.5 mL). Early (within 48 hours after VEA) CMR showed microvascular obstruction (MVO) in 30 of 31 patients. Follow-up CMR after a median of 51 (IQR: 41-170) days showed evolution of MVO to scar. ICE echogenicity and CMR scar volumes correlated with each other and with ethanol volume. Ventricular function and interventricular septum remained intact. CONCLUSIONS: VEA leads to intramural ablation that can be tracked intraprocedurally by ICE and creates regions of MVO that are chronically replaced by myocardial scar. VEA scar volume does not compromise septal integrity or ventricular function.


Assuntos
Ablação por Cateter , Taquicardia Ventricular , Septo Interventricular , Humanos , Cicatriz , Meios de Contraste , Taquicardia Ventricular/cirurgia , Ablação por Cateter/métodos , Gadolínio , Arritmias Cardíacas/cirurgia
7.
J Cardiovasc Surg (Torino) ; 63(4): 498-506, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35848870

RESUMO

BACKGROUND: Chordal apparatus preservation is important for preserving left ventricular (LV) function in the long-term perspective. We present results of originally modified chordal-sparing mitral valve replacement (MVR) successfully used in patients with mitral stenosis and mitral insufficiency. METHODS: The modified surgical method involves preserving only four strut chords with portions of the mitral valve leaflets, which are later fixed to the fibrous ring. The rest of the leaflets and marginal chords are removed. RESULTS: Starting from 1998, 484 modified universal chordal-sparing MVR were performed including 270 (55.79%) in patients with rheumatic mitral stenosis and 214 (44.21%) in patients with mitral valve insufficiency. Overall, 116 patients underwent isolated MVR, and 368 patients underwent MRV with concomitant surgical procedures. The overall in-hospital mortality was 2.5% (12 patients). Long-term efficiency was assessed in patients discharged after isolated MVR (114 patients), average follow-up period was 3.1±0.6 years. Preservation of strut chords ensured normalization of intraventricular anatomy and prevented LV dilatation; the LV Sphericity Index is maintained at 0.44-0.63. Heart failure functional class (NYHA) was improved in all patients. Non-fatal prosthesis-related complications were observed in 11 patients (9.65%). Three patients (2.63%) died due to extracardiac causes. CONCLUSIONS: The proposed modification of the strut chordal-sparing mitral valve replacement technique allows preserving functionally complete annulo-papillary apparatus, regardless of the nature of valvular dysfunction, and provides parallel movement to the mechanical prosthesis. This modified surgical technique is safe and effective and eliminates the risk of jamming of the prosthesis disk and left ventricular outflow tract obstruction.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Estenose da Valva Mitral , Disfunção Ventricular Esquerda , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Humanos , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/cirurgia , Estenose da Valva Mitral/diagnóstico por imagem , Estenose da Valva Mitral/cirurgia , Disfunção Ventricular Esquerda/cirurgia , Função Ventricular Esquerda
8.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35563006

RESUMO

The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation. Here we report, for the first time, that polyamines induce dimerization of mouse recombinant full-length OAZ1, forming an (OAZ1)2-Polyamine complex. Dimerization could be modulated by functionally active C-methylated spermidine mimetics (MeSpds) by changing the position of the methyl group along the Spd backbone-2-MeSpd was a poor inducer as opposed to 1-MeSpd, 3-MeSpd, and Spd, which were good inducers. Importantly, the ability of compounds to inhibit polyamine uptake correlated with the efficiency of the (OAZ1)2-Polyamine complex formation. Thus, the (OAZ1)2-Polyamine complex may be needed to inhibit polyamine uptake. The efficiency of polyamine-induced ribosomal +1 frameshifting of OAZ1 mRNA could also be differentially modulated by MeSpds-2-MeSpd was a poor inducer of OAZ1 biosynthesis and hence a poor downregulator of ODC activity unlike the other MeSpds. These findings offer new insight into the OAZ1-mediated regulation of polyamine homeostasis and provide the chemical tools to study it.


Assuntos
Poliaminas , Espermidina , Animais , Dimerização , Mudança da Fase de Leitura do Gene Ribossômico , Camundongos , Ornitina Descarboxilase/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Poliaminas/farmacologia , Proteínas , Espermidina/química , Espermidina/metabolismo , Espermidina/farmacologia
9.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946951

RESUMO

The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.


Assuntos
Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Fatores de Transcrição/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/ultraestrutura , Instabilidade Genômica , Humanos , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
10.
Nucleic Acids Res ; 49(19): 11350-11366, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34554261

RESUMO

Long interspersed nuclear element-1 (L1) is an autonomous non-LTR retrotransposon comprising ∼20% of the human genome. L1 self-propagation causes genomic instability and is strongly associated with aging, cancer and other diseases. The endonuclease domain of L1's ORFp2 protein (L1-EN) initiates de novo L1 integration by nicking the consensus sequence 5'-TTTTT/AA-3'. In contrast, related nucleases including structurally conserved apurinic/apyrimidinic endonuclease 1 (APE1) are non-sequence specific. To investigate mechanisms underlying sequence recognition and catalysis by L1-EN, we solved crystal structures of L1-EN complexed with DNA substrates. This showed that conformational properties of the preferred sequence drive L1-EN's sequence-specificity and catalysis. Unlike APE1, L1-EN does not bend the DNA helix, but rather causes 'compression' near the cleavage site. This provides multiple advantages for L1-EN's role in retrotransposition including facilitating use of the nicked poly-T DNA strand as a primer for reverse transcription. We also observed two alternative conformations of the scissile bond phosphate, which allowed us to model distinct conformations for a nucleophilic attack and a transition state that are likely applicable to the entire family of nucleases. This work adds to our mechanistic understanding of L1-EN and related nucleases and should facilitate development of L1-EN inhibitors as potential anticancer and antiaging therapeutics.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/química , Desoxirribonuclease I/química , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Clivagem do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Genoma Humano , Instabilidade Genômica , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Termodinâmica
11.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542532

RESUMO

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Feminino , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Leucotrienos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Doença de Parkinson/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Endogâmicos Lew
12.
JACC Clin Electrophysiol ; 6(11): 1420-1431, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33121671

RESUMO

OBJECTIVES: The aim of this study was to assess the long-term efficacy and outcomes of retrograde venous ethanol ablation in treating ventricular arrhythmias (VAs). BACKGROUND: Retrograde coronary venous ethanol ablation (RCVEA) can be effective for radiofrequency ablation (RFA)-refractory VAs, particularly those arising in the LV summit (LVS). METHODS: Patients with drug and RFA-refractory VAs were considered for RCVEA after RF failure attempts. Intramural coronary veins (tributaries of the great cardiac, anterior interventricular, lateral cardiac, posterolateral, and middle cardiac) were mapped using an angioplasty wire. Ethanol infusion was delivered in veins with appropriate signals. RESULTS: Of 63 patients (age 63 ± 14 years; 60% men) with VAs (71% extrasystole, 29% ventricular tachycardia, 76% LVS origin), RCVEA was performed in 56 patients who had suitable vein branches. These were defined as those amenable to cannulation and with intramural signals that preceded those mapped in the epicardium or endocardium and had better matching pace maps or entrainment responses. Seven patients had no suitable veins and underwent RFA. In 38 of 56 (68%) patients, the VAs were successfully terminated exclusively with ethanol infusion. In 17 of 56 (30%) patients, successful ablation was achieved using ethanol with adjunctive RFA in the vicinity of the infused vein due to acute recurrence or ethanol-induced change in VA morphology. Overall, isolated or adjuvant RCVEA was successful in 55 of 56 (98%) patients. At 1-year follow-up, 77% of patients were free of recurrent arrhythmias. Procedural complications included 2 venous dissections that led to pericardial effusions. CONCLUSIONS: RCVEA offers a significant long-term effective treatment for patients with drug and RF-refractory VAs.


Assuntos
Etanol , Taquicardia Ventricular , Arritmias Cardíacas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pericárdio , Taquicardia Ventricular/tratamento farmacológico , Resultado do Tratamento
13.
Biochimie ; 171-172: 110-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32105815

RESUMO

Human Ku heterodimeric protein composed of Ku70 and Ku80 subunits plays an important role in the non-homologous end-joining DNA repair pathway as a sensor of double strand DNA breaks. Ku is also involved in numerous cellular processes, and in some of them it acts in an RNA-dependent manner. However, RNA binding properties of the human Ku have not been well studied. Here we have analyzed interactions of a recombinant Ku heterodimer with a set of RNAs of various structure as well as eCLIP (enhanced crosslinking and immunoprecipitation) data for human Ku70. As a result, we have proposed a consensus RNA structure preferable for the Ku binding that is a hairpin possessing a bulge just near GpG sequence-containing terminal loop. 7SK snRNA is a scaffold for a ribonucleoprotein complex (7SK snRNP), which is known to participate in transcription regulation. We have shown that the recombinant Ku specifically binds a G-rich loop of hairpin 1 within 7SK snRNA. Moreover, Ku protein has been co-precipitated from HEK 293T cells with endogenous 7SK snRNA and such proteins included in 7SK snRNP as HEXIM1, Cdk9 and CTIP2. Ku and Cdk9 binding is found to be RNA-independent, meanwhile HEXIM1 and Ku co-precipitation depended on the presence of intact 7SK snRNA. The latter result has been confirmed using recombinant HEXIM1 and Ku proteins. Colocalization of Ku and CTIP2 was additionally confirmed by confocal microscopy. These results allow us to propose human Ku as a new component of the 7SK snRNP complex.


Assuntos
Autoantígeno Ku/metabolismo , RNA Longo não Codificante/metabolismo , Sítios de Ligação , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
14.
Bioorg Med Chem ; 28(7): 115378, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32089391

RESUMO

A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells. Their antiviral activity was tested in model cell lines infected with herpes simplex virus type I. Also, it was found that DBPA(n) could inhibit catalytic activities of HIV-1 integrase at low micromolar concentrations. All of the dimeric bisbenzimidazoles DBPA(n) manifested fluorescent properties, were well soluble in water, nontoxic up to concentrations of 200 µM, and could penetrate into nuclei followed by binding to DNA.


Assuntos
Bisbenzimidazol/química , Bisbenzimidazol/farmacologia , DNA/química , Aliivibrio/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Sequência de Bases , DNA/genética , Desenho de Fármacos , Escherichia coli/metabolismo , Corantes Fluorescentes , Integrase de HIV , Inibidores de Integrase de HIV/farmacologia , Ligantes , Estrutura Molecular , Pirróis , Percepção de Quorum/fisiologia , Relação Estrutura-Atividade
15.
Oxid Med Cell Longev ; 2019: 6016278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885806

RESUMO

HIV-induced immune suppression results in the high prevalence of HIV/AIDS-associated malignancies including Kaposi sarcoma, non-Hodgkin lymphoma, and cervical cancer. HIV-infected people are also at an increased risk of "non-AIDS-defining" malignancies not directly linked to immune suppression but associated with viral infections. Their incidence is increasing despite successful antiretroviral therapy. The mechanism behind this phenomenon remains unclear. Here, we obtained daughter clones of murine mammary gland adenocarcinoma 4T1luc2 cells expressing consensus reverse transcriptase of HIV-1 subtype A FSU_A strain (RT_A) with and without primary mutations of drug resistance. In in vitro tests, mutations of resistance to nucleoside inhibitors K65R/M184V reduced the polymerase, and to nonnucleoside inhibitors K103N/G190S, the RNase H activities of RT_A. Expression of these RT_A variants in 4T1luc2 cells led to increased production of the reactive oxygen species (ROS), lipid peroxidation, enhanced cell motility in the wound healing assay, and upregulation of expression of Vimentin and Twist. These properties, particularly, the expression of Twist, correlated with the levels of expression RT_A and/or the production of ROS. When implanted into syngeneic BALB/C mice, 4T1luc2 cells expressing nonmutated RT_A demonstrated enhanced rate of tumor growth and increased metastatic activity, dependent on the level of expression of RT_A and Twist. No enhancement was observed for the clones expressing mutated RT_A variants. Plausible mechanisms are discussed involving differential interactions of mutated and nonmutated RTs with its cellular partners involved in the regulation of ROS. This study establishes links between the expression of HIV-1 RT, production of ROS, induction of EMT, and enhanced propagation of RT-expressing tumor cells. Such scenario can be proposed as one of the mechanisms of HIV-induced/enhanced carcinogenesis not associated with immune suppression.


Assuntos
Adenocarcinoma/virologia , Neoplasias da Mama/virologia , Infecções por HIV/metabolismo , Transcriptase Reversa do HIV/metabolismo , HIV-1/metabolismo , Neoplasias Mamárias Experimentais/virologia , Proteína 1 Relacionada a Twist/metabolismo , Animais , Carcinogênese , Processos de Crescimento Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Infecções por HIV/patologia , Transcriptase Reversa do HIV/genética , HIV-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética , Metástase Neoplásica , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Relacionada a Twist/genética , Regulação para Cima
16.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31017574

RESUMO

BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumour suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , RNA/metabolismo , Recombinação Genética , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Humanos
17.
Nat Commun ; 9(1): 765, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472584

RESUMO

Calcium-independent phospholipase A2ß (iPLA2ß) regulates important physiological processes including inflammation, calcium homeostasis and apoptosis. It is genetically linked to neurodegenerative disorders including Parkinson's disease. Despite its known enzymatic activity, the mechanisms underlying iPLA2ß-induced pathologic phenotypes remain poorly understood. Here, we present a crystal structure of iPLA2ß that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. They are surrounded by ankyrin repeat domains that adopt an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. The structure and additional solution studies suggest that both catalytic domains can be bound and allosterically inhibited by a single calmodulin. These features suggest mechanisms of iPLA2ß cellular localization and activity regulation, providing a basis for inhibitor development. Furthermore, the structure provides a framework to investigate the role of neurodegenerative mutations and the function of iPLA2ß in the brain.


Assuntos
Fosfolipases A2 do Grupo VI/química , Fosfolipases A2 do Grupo VI/metabolismo , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo , Domínio Catalítico , Cristalização , Dimerização , Regulação da Expressão Gênica , Fosfolipases A2 do Grupo VI/genética , Humanos , Ligação Proteica , Transporte Proteico
18.
J Immunol Res ; 2017: 7407136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28717654

RESUMO

Reverse transcriptase (RT) is a key enzyme in viral replication and susceptibility to ART and a crucial target of immunotherapy against drug-resistant HIV-1. RT induces oxidative stress which undermines the attempts to make it immunogenic. We hypothesized that artificial secretion may reduce the stress and make RT more immunogenic. Inactivated multidrug-resistant RT (RT1.14opt-in) was N-terminally fused to the signal providing secretion of NS1 protein of TBEV (Ld) generating optimized inactivated Ld-carrying enzyme RT1.14oil. Promotion of secretion prohibited proteasomal degradation increasing the half-life and content of RT1.14oil in cells and cell culture medium, drastically reduced the residual polymerase activity, and downmodulated oxidative stress. BALB/c mice were DNA-immunized with RT1.14opt-in or parental RT1.14oil by intradermal injections with electroporation. Fluorospot and ELISA tests revealed that RT1.14opt-in and RT1.14oil induced IFN-γ/IL-2, RT1.14opt-in induced granzyme B, and RT1.14oil induced perforin production. Perforin secretion correlated with coproduction of IFN-γ and IL-2 (R = 0,97). Both DNA immunogens induced strong anti-RT antibody response. Ld peptide was not immunogenic. Thus, Ld-driven secretion inferred little change to RT performance in DNA immunization. Positive outcome was the abrogation of polymerase activity increasing safety of RT-based DNA vaccines. Identification of the molecular determinants of low cellular immunogenicity of RT requires further studies.


Assuntos
Vacinas contra a AIDS/imunologia , Transcriptase Reversa do HIV/imunologia , Transcriptase Reversa do HIV/metabolismo , Imunogenicidade da Vacina , Estresse Oxidativo , Sinais Direcionadores de Proteínas/genética , Vacinas de DNA/imunologia , Animais , Linhagem Celular , Feminino , Granzimas/genética , Anticorpos Anti-HIV/sangue , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/imunologia , Humanos , Interferon gama , Interleucina-2 , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Vacinas de DNA/administração & dosagem , Vacinas de DNA/efeitos adversos
20.
Nat Commun ; 7: 12580, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27550514

RESUMO

Ubiquitin (Ub) is a protein modifier that controls processes ranging from protein degradation to endocytosis, but early-acting regulators of the three-enzyme ubiquitylation cascade are unknown. Here we report that the prenylated membrane-anchored ubiquitin-fold protein (MUB) is an early-acting regulator of subfamily-specific E2 activation. An AtMUB3:AtUBC8 co-crystal structure defines how MUBs inhibit E2∼Ub formation using a combination of E2 backside binding and a MUB-unique lap-bar loop to block E1 access. Since MUBs tether Arabidopsis group VI E2 enzymes (related to HsUbe2D and ScUbc4/5) to the plasma membrane, and inhibit E2 activation at physiological concentrations, they should function as potent plasma membrane localized regulators of Ub chain synthesis in eukaryotes. Our findings define a biochemical function for MUB, a family of highly conserved Ub-fold proteins, and provide an example of selective activation between cognate Ub E2s, previously thought to be constitutively activated by E1s.


Assuntos
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Eucariotos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Prenilação de Proteína , Homologia de Sequência de Aminoácidos , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA