Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4629, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330917

RESUMO

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified viral components and inactivated viruses. However, structural and ultrastructural evidence on how the SARS-CoV-2 infection progresses in the native cellular context is scarce, and there is a lack of comprehensive knowledge on the SARS-CoV-2 replicative cycle. To correlate cytopathic events induced by SARS-CoV-2 with virus replication processes in frozen-hydrated cells, we established a unique multi-modal, multi-scale cryo-correlative platform to image SARS-CoV-2 infection in Vero cells. This platform combines serial cryoFIB/SEM volume imaging and soft X-ray cryo-tomography with cell lamellae-based cryo-electron tomography (cryoET) and subtomogram averaging. Here we report critical SARS-CoV-2 structural events - e.g. viral RNA transport portals, virus assembly intermediates, virus egress pathway, and native virus spike structures, in the context of whole-cell volumes revealing drastic cytppathic changes. This integrated approach allows a holistic view of SARS-CoV-2 infection, from the whole cell to individual molecules.


Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Montagem de Vírus/imunologia , Liberação de Vírus/imunologia , Replicação Viral/imunologia , Animais , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , SARS-CoV-2/ultraestrutura , Células Vero , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia , Replicação Viral/fisiologia
2.
J Vis Exp ; (171)2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34125093

RESUMO

Three-dimensional (3D) structured illumination microscopy (SIM) allows imaging of fluorescently labelled cellular structures at higher resolution than conventional fluorescence microscopy. This super-resolution (SR) technique enables visualization of molecular processes in whole cells and has the potential to be used in conjunction with electron microscopy and X-ray tomography to correlate structural and functional information. A SIM microscope for cryogenically preserved samples (cryoSIM) has recently been commissioned at the correlative cryo-imaging beamline B24 at the UK synchrotron. It was designed specifically for 3D imaging of biological samples at cryogenic temperatures in a manner compatible with subsequent imaging of the same samples by X-ray microscopy methods such as cryo-soft X-ray tomography. This video article provides detailed methods and protocols for successful imaging using the cryoSIM. In addition to instructions on the operation of the cryoSIM microscope, recommendations have been included regarding the choice of samples, fluorophores, and parameter settings. The protocol is demonstrated in U2OS cell samples whose mitochondria and tubulin have been fluorescently labelled.


Assuntos
Criopreservação , Técnicas Citológicas , Corantes Fluorescentes , Células/ultraestrutura , Coleta de Dados , Humanos , Imageamento Tridimensional , Iluminação , Microscopia de Fluorescência , Tubulina (Proteína)
3.
Nat Protoc ; 16(6): 2851-2885, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33990802

RESUMO

3D correlative microscopy methods have revolutionized biomedical research, allowing the acquisition of multidimensional information to gain an in-depth understanding of biological systems. With the advent of relevant cryo-preservation methods, correlative imaging of cryogenically preserved samples has led to nanometer resolution imaging (2-50 nm) under harsh imaging regimes such as electron and soft X-ray tomography. These methods have now been combined with conventional and super-resolution fluorescence imaging at cryogenic temperatures to augment information content from a given sample, resulting in the immediate requirement for protocols that facilitate hassle-free, unambiguous cross-correlation between microscopes. We present here sample preparation strategies and a direct comparison of different working fiducialization regimes that facilitate 3D correlation of cryo-structured illumination microscopy and cryo-soft X-ray tomography. Our protocol has been tested at two synchrotron beamlines (B24 at Diamond Light Source in the UK and BL09 Mistral at ALBA in Spain) and has led to the development of a decision aid that facilitates experimental design with the strategic use of markers based on project requirements. This protocol takes between 1.5 h and 3.5 d to complete, depending on the cell populations used (adherent cells may require several days to grow on sample carriers).


Assuntos
Criopreservação/métodos , Tomografia por Raios X , Animais , Células HeLa , Humanos , Imageamento Tridimensional , Camundongos , Microscopia/métodos , Células NIH 3T3
4.
STAR Protoc ; 2(1): 100253, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490973

RESUMO

This protocol illustrates the steps necessary to deposit correlated 3D cryo-imaging data from cryo-structured illumination microscopy and cryo-soft X-ray tomography with the BioStudies and EMPIAR deposition databases of the European Bioinformatics Institute. There is currently a real need for a robust method of data deposition to ensure unhindered access to and independent validation of correlative light and X-ray microscopy data to allow use in further comparative studies, educational activities, and data mining. For complete details on the use and execution of this protocol, please refer to Kounatidis et al. (2020).


Assuntos
Bases de Dados Factuais , Imageamento Tridimensional , Tomografia por Raios X
5.
bioRxiv ; 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33173874

RESUMO

Since the outbreak of the SARS-CoV-2 pandemic, there have been intense structural studies on purified recombinant viral components and inactivated viruses. However, investigation of the SARS-CoV-2 infection in the native cellular context is scarce, and there is a lack of comprehensive knowledge on SARS-CoV-2 replicative cycle. Understanding the genome replication, assembly and egress of SARS-CoV-2, a multistage process that involves different cellular compartments and the activity of many viral and cellular proteins, is critically important as it bears the means of medical intervention to stop infection. Here, we investigated SARS-CoV-2 replication in Vero cells under the near-native frozen-hydrated condition using a unique correlative multi-modal, multi-scale cryo-imaging approach combining soft X-ray cryo-tomography and serial cryoFIB/SEM volume imaging of the entire SARS-CoV-2 infected cell with cryo-electron tomography (cryoET) of cellular lamellae and cell periphery, as well as structure determination of viral components by subtomogram averaging. Our results reveal at the whole cell level profound cytopathic effects of SARS-CoV-2 infection, exemplified by a large amount of heterogeneous vesicles in the cytoplasm for RNA synthesis and virus assembly, formation of membrane tunnels through which viruses exit, and drastic cytoplasm invasion into nucleus. Furthermore, cryoET of cell lamellae reveals how viral RNAs are transported from double-membrane vesicles where they are synthesized to viral assembly sites; how viral spikes and RNPs assist in virus assembly and budding; and how fully assembled virus particles exit the cell, thus stablishing a model of SARS-CoV-2 genome replication, virus assembly and egress pathways.

6.
ACS Nano ; 13(10): 11049-11061, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31525960

RESUMO

Zinc oxide engineered nanomaterials (ZnO ENMs) are used in a variety of applications worldwide due to their optoelectronic and antibacterial properties with potential contaminant risk to the environment following their disposal. One of the main potential pathways for ZnO nanomaterials to reach the environment is via urban wastewater treatment plants. So far there is no technique that can provide spatiotemporal nanoscale information about the rates and mechanisms by which the individual nanoparticles transform. Fundamental knowledge of how the surface chemistry of individual particles change, and the heterogeneity of transformations within the system, will reveal the critical physicochemical properties determining environmental damage and deactivation. We applied a methodology based on spatially resolved in situ X-ray fluorescence microscopy (XFM), allowing observation of real-time dissolution and morphological and chemical evolution of synthetic template-grown ZnO nanorods (∼725 nm length, ∼140 nm diameter). Core-shell ZnO-ZnS nanostructures were formed rapidly within 1 h, and significant amounts of ZnS species were generated, with a corresponding depletion of ZnO after 3 h. Diffuse nanoparticles of ZnS, Zn3(PO4)2, and Zn adsorbed to Fe-oxyhydroxides were also imaged in some nonsterically impeded regions after 3 h. The formation of diffuse nanoparticles was affected by ongoing ZnO dissolution (quantified by inductively coupled plasma mass spectrometry) and the humic acid content in the simulated sludge. Complementary ex situ X-ray absorption spectroscopy and scanning electron microscopy confirmed a significant decrease in the ZnO contribution over time. Application of time-resolved XFM enables predictions about the rates at which ZnO nanomaterials transform during their first stages of the wastewater treatment process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA