Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(32): 22276-85, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456283

RESUMO

The combustion method was used to prepare a precursor powder of an iron-gallium oxide compound which was further heat-treated in order to obtain a set of Fe1+xGa2-xO4 nanoparticles. All samples have a cubic spinel-type structure (space group Fd3[combining macron]m) and the particle size varies from 1.8 to 28.0 nm depending on the treatment conditions. From the comparative analysis by XRD, EDS, and Raman and Mössbauer spectroscopy the creation of a new spinel phase γ-FeGaO3, which was mainly located on the particle surface, was established. As a result, the composition consists of a FeGa2O4 core covered by a FeGaO3 shell. The relative content of FeGa2O4/FeGaO3 compounds in the composites can be varied by heat treatment. The maximum in the ZFC magnetization curves appeared in all samples at about 20-30 K corresponding to the spin-freezing temperature Tsg, which is much higher than in the bulk compound with a pure inverse spinel structure (Ga)[FeGa]O4. The values of effective Curie temperature ΘC for the Fe1+xGa2-xO4 nanoparticles are rather high and positive, indicating a ferromagnetic interaction between iron ions. The high values of the magnetic frustration parameter f = ΘC/Tsg (up to 7) indicate a high degree of magnetic frustration. The low temperature Mössbauer data reveal the magnetic ordering of Fe ions in all samples with the magnetic transition at about 20-26 K depending on the particle size. The specific features of the Mössbauer parameters indicate the properties of non-homogeneous magnetic systems with frustrated interactions specific to spin-glasses. The magnetic system behaves as a spin-glass below Tsg and it is superparamagnetic above Tsg. Such a system is called a "super-spin-glass". The anisotropy energy Eanis strongly depends on the content of Fe(2+) and Fe(3+) ions which contribute to the magnetocrystalline Ecryst and exchange Eex anisotropies, respectively. The anisotropy energy can be tuned by variation of the content of the (FeGaO3)-(FeGa2O4) phases in these complex composites.

2.
Mater Sci Eng C Mater Biol Appl ; 45: 225-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491824

RESUMO

Hollow microcapsules with the shell composed of biodegradable polyelectrolytes modified with the maghemite nanoparticles were fabricated by in situ synthesis. The nanoparticles were synthesized from the iron salt and the base directly on the capsule shells prepared by "layer by layer" technique. An average diameter of the capsule was about 6.7 µm while the average thickness of the capsule shell was 0.9 µm. XRD, HRTEM, Raman and Mössbauer spectroscopy data revealed that the iron oxide nanoparticles have the crystal structure of maghemite γ-Fe2O3. The nanoparticles were highly monodisperse with medium size of 7.5 nm. The Mössbauer spectroscopy data revealed that the nanoparticles have marked superparamagnetic behavior which was retained up to room temperature due to slow spin relaxation. Because of that, the microcapsules can be handled by an external magnetic field. Both these properties are important for target drug delivery. Based on the Mössbauer spectroscopy data, the spin blocking temperatures TB of about 90K was found for the particles with size D≤5 nm and TB≈250 K for particles with D≥6 nm. The anisotropy constants K were determined using the superparamagnetic approximation and in the low temperature approximation of collective magnetic excitation.


Assuntos
Cápsulas/síntese química , Nanopartículas de Magnetita/química , Cápsulas/química , Compostos Férricos/química , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Espectroscopia de Mossbauer , Análise Espectral Raman , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA