Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 39, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378518

RESUMO

BACKGROUND: Focal adhesion signaling involving receptor tyrosine kinases (RTK) and integrins co-controls cancer cell survival and therapy resistance. However, co-dependencies between these receptors and therapeutically exploitable vulnerabilities remain largely elusive in HPV-negative head and neck squamous cell carcinoma (HNSCC). METHODS: The cytotoxic and radiochemosensitizing potential of targeting 10 RTK and ß1 integrin was determined in up to 20 3D matrix-grown HNSCC cell models followed by drug screening and patient-derived organoid validation. RNA sequencing and protein-based biochemical assays were performed for molecular characterization. Bioinformatically identified transcriptomic signatures were applied to patient cohorts. RESULTS: Fibroblast growth factor receptor (FGFR 1-4) targeting exhibited the strongest cytotoxic and radiosensitizing effects as monotherapy and combined with ß1 integrin inhibition, exceeding the efficacy of the other RTK studied. Pharmacological pan-FGFR inhibition elicited responses ranging from cytotoxicity/radiochemosensitization to resistance/radiation protection. RNA sequence analysis revealed a mesenchymal-to-epithelial transition (MET) in sensitive cell models, whereas resistant cell models exhibited a partial epithelial-to-mesenchymal transition (EMT). Accordingly, inhibition of EMT-associated kinases such as EGFR caused reduced adaptive resistance and enhanced (radio)sensitization to FGFR inhibition cell model- and organoid-dependently. Transferring the EMT-associated transcriptomic profiles to HNSCC patient cohorts not only demonstrated their prognostic value but also provided a conclusive validation of the presence of EGFR-related vulnerabilities that can be strategically exploited for therapeutic interventions. CONCLUSIONS: This study demonstrates that pan-FGFR inhibition elicits a beneficial radiochemosensitizing and a detrimental radioprotective potential in HNSCC cell models. Adaptive EMT-associated resistance appears to be of clinical importance, and we provide effective molecular approaches to exploit this therapeutically.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Integrina beta1/genética , Linhagem Celular Tumoral , Receptores Proteína Tirosina Quinases/genética , Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Fenótipo , Transição Epitelial-Mesenquimal/genética
2.
Biomed Pharmacother ; 171: 116217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286037

RESUMO

Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFß, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule ß1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel ß1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.


Assuntos
Compostos de Anilina , Cromonas , Neoplasias de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases , Tiazóis , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fosfatidilinositol 3-Quinases/metabolismo , Integrina beta1/genética , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Classe I de Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral
3.
Neuro Oncol ; 25(4): 648-661, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219689

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fast-growing primary brain tumor characterized by high invasiveness and resistance. This results in poor patient survival. Resistance is caused by many factors, including cell-extracellular matrix (ECM) interactions. Here, we addressed the role of adhesion protein integrin α2, which we identified in a high-throughput screen for novel potential targets in GBM cells treated with standard therapy consisting of temozolomide (TMZ) and radiation. METHODS: In our study, we used a range of primary/stem-like and established GBM cell models in vitro and in vivo. To identify regulatory mechanisms, we employed high-throughput kinome profiling, Western blotting, immunofluorescence staining, reporter, and activity assays. RESULTS: Our data showed that integrin α2 is overexpressed in GBM compared to normal brain and, that its deletion causes radiochemosensitization. Similarly, invasion and adhesion were significantly reduced in TMZ-irradiated GBM cell models. Furthermore, we found that integrin α2-knockdown impairs the proliferation of GBM cells without affecting DNA damage repair. At the mechanistic level, we found that integrin α2 affects the activity of activating transcription factor 1 (ATF1) and modulates the expression of extracellular signal-regulated kinase 1 (ERK1) regulated by extracellular signals. Finally, we demonstrated that integrin α2-deficiency inhibits tumor growth and thereby prolongs the survival of mice with orthotopically growing GBM xenografts. CONCLUSIONS: Taken together our data suggest that integrin α2 may be a promising target to overcome GBM resistance to radio- and chemotherapy. Thus, it would be worth evaluating how efficient and safe the adjuvant use of integrin α2 inhibitors is to standard radio(chemo)therapy in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Integrina alfa2/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/uso terapêutico
4.
Int J Radiat Oncol Biol Phys ; 111(5): e63-e74, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343607

RESUMO

The development of molecular targeted drugs with radiation and chemotherapy is critically important for improving the outcomes of patients with hard-to-treat, potentially curable cancers. However, too many preclinical studies have not translated into successful radiation oncology trials. Major contributing factors to this insufficiency include poor reproducibility of preclinical data, inadequate preclinical modeling of intertumoral genomic heterogeneity that influences treatment sensitivity in the clinic, and a reliance on tumor growth delay instead of local control (TCD50) endpoints. There exists an urgent need to overcome these barriers to facilitate successful clinical translation of targeted radiosensitizers. To this end, we have used 3-dimensional (3D) cell culture assays to better model tumor behavior in vivo. Examples of successful prediction of in vivo effects with these 3D assays include radiosensitization of head and neck cancers by inhibiting epidermal growth factor receptor or focal adhesion kinase signaling, and radioresistance associated with oncogenic mutation of KRAS. To address the issue of tumor heterogeneity, we leveraged institutional resources that allow high-throughput 3D screening of radiation combinations with small-molecule inhibitors across genomically characterized cell lines from lung, head and neck, and pancreatic cancers. This high-throughput screen is expected to uncover genomic biomarkers that will inform the successful clinical translation of targeted agents from the National Cancer Institute Cancer Therapy Evaluation Program portfolio and other sources. Screening "hits" need to be subjected to refinement studies that include clonogenic assays, addition of disease-specific chemotherapeutics, target/biomarker validation, and integration of patient-derived tumor models. The chemoradiosensitizing activities of the most promising drugs should be confirmed in TCD50 assays in xenograft models with or without relevant biomarker and using clinically relevant radiation fractionation. We predict that appropriately validated and biomarker-directed targeted therapies will have a higher likelihood than past efforts of being successfully incorporated into the standard management of hard-to-treat tumors.


Assuntos
Terapia de Alvo Molecular , Biomarcadores Tumorais , Humanos , Neoplasias , Preparações Farmacêuticas , Radiossensibilizantes/uso terapêutico , Reprodutibilidade dos Testes
5.
J Innate Immun ; 12(3): 248-256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31574508

RESUMO

Mononuclear phagocytes, such as macrophages and microglia, are key regulators of organ homeostasis including vascularization processes. Here, we investigated the role of the suppressor of cytokine signaling 3 (SOCS3) in myeloid cells as a regulator of mononuclear phagocyte function and their interaction with endothelial cells in the context of sprouting angiogenesis. As compared to SOCS3-sufficient counterparts, SOCS3-deficient microglia and macrophages displayed an increased phagocytic activity toward primary apoptotic endothelial cells, which was associated with an enhanced expression of the opsonin growth arrest-specific 6 (Gas6), a major prophagocytic molecule. Furthermore, we found that myeloid SOCS3 deficiency significantly reduced angiogenesis in an ex vivo mouse aortic ring assay, which could be reversed by the inhibition of the Gas6 receptor Mer. Together, SOCS3 in myeloid cells regulates the Gas6/Mer-dependent phagocytosis of endothelial cells, and thereby angiogenesis-related processes. Our findings provide novel insights into the complex crosstalk between mononuclear phagocytes and endothelial cells, and may therefore provide a new platform for the development of new antiangiogenic therapies.


Assuntos
Apoptose/imunologia , Células Endoteliais/imunologia , Células Mieloides/imunologia , Neovascularização Fisiológica/imunologia , Proteína 3 Supressora da Sinalização de Citocinas/deficiência , Animais , Apoptose/genética , Camundongos , Camundongos Transgênicos , Neovascularização Fisiológica/genética , Fagocitose , Proteína 3 Supressora da Sinalização de Citocinas/imunologia
6.
Arterioscler Thromb Vasc Biol ; 39(6): 1137-1148, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070476

RESUMO

Objective- Pathological angiogenesis, such as exuberant retinal neovascularization during proliferative retinopathies, involves endothelial responses to ischemia/hypoxia and oxidative stress. Autophagy is a clearance system enabling bulk degradation of intracellular components and is implicated in cellular adaptation to stressful conditions. Here, we addressed the role of the ATG5 (autophagy-related protein 5) in endothelial cells in the context of pathological ischemia-related neovascularization in the murine model of retinopathy of prematurity. Approach and Results- Autophagic vesicles accumulated in neovascular tufts of the retina of retinopathy of prematurity mice. Endothelium-specific Atg5 deletion reduced pathological neovascularization in the retinopathy of prematurity model. In contrast, no alterations in physiological retina vascularization were observed in endothelial-specific ATG5 deficiency, suggesting a specific role of endothelial ATG5 in pathological hypoxia/reoxygenation-related angiogenesis. Consistently, in an aortic ring angiogenesis assay, endothelial ATG5 deficiency resulted in impaired angiogenesis under hypoxia/reoxygenation conditions. As compared to ATG5-sufficient endothelial cells, ATG5-deficient cells displayed impaired mitochondrial respiratory activity, diminished production of mitochondrial reactive oxygen species and decreased phosphorylation of the VEGFR2 (vascular endothelial growth factor receptor 2). Consistently, ATG5-deficient endothelial cells displayed decreased oxidative inactivation of PTPs (phospho-tyrosine phosphatases), likely due to the reduced reactive oxygen species levels resulting from ATG5 deficiency. Conclusions- Our data suggest that endothelial ATG5 supports mitochondrial function and proangiogenic signaling in endothelial cells in the context of pathological hypoxia/reoxygenation-related neovascularization. Endothelial ATG5, therefore, represents a potential target for the treatment of pathological neovascularization-associated diseases, such as retinopathies.


Assuntos
Proteína 5 Relacionada à Autofagia/deficiência , Células Endoteliais/metabolismo , Neovascularização Patológica , Vasos Retinianos/metabolismo , Retinopatia da Prematuridade/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Vasos Retinianos/patologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
FASEB J ; 33(2): 1758-1770, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30156910

RESUMO

A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.-Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Endotélio Vascular/patologia , Neovascularização Patológica , Vasos Retinianos/patologia , Proteína ADAM17/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Transformada , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
8.
Thromb Haemost ; 117(6): 1150-1163, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28447099

RESUMO

We have recently identified endothelial cell-secreted developmental endothelial locus-1 (Del-1) as an endogenous inhibitor of ß2-integrin-dependent leukocyte infiltration. Del-1 was previously also implicated in angiogenesis. Here, we addressed the role of endogenously produced Del-1 in ischaemia-related angiogenesis. Intriguingly, Del-1-deficient mice displayed increased neovascularisation in two independent ischaemic models (retinopathy of prematurity and hind-limb ischaemia), as compared to Del-1-proficient mice. On the contrary, angiogenic sprouting in vitro or ex vivo (aortic ring assay) and physiological developmental retina angiogenesis were not affected by Del-1 deficiency. Mechanistically, the enhanced ischaemic neovascularisation in Del-1-deficiency was linked to higher infiltration of the ischaemic tissue by CD45+ haematopoietic and immune cells. Moreover, Del-1-deficiency promoted ß2-integrin-dependent adhesion of haematopoietic cells to endothelial cells in vitro, and the homing of hematopoietic progenitor cells and of immune cell populations to ischaemic muscles in vivo. Consistently, the increased hind limb ischaemia-related angiogenesis in Del-1 deficiency was completely reversed in mice lacking both Del-1 and the ß2-integrin LFA-1. Additionally, enhanced retinopathy-associated neovascularisation in Del-1-deficient mice was reversed by LFA-1 blockade. Our data reveal a hitherto unrecognised function of endogenous Del-1 as a local inhibitor of ischaemia-induced angiogenesis by restraining LFA-1-dependent homing of pro-angiogenic haematopoietic cells to ischaemic tissues. Our findings are relevant for the optimisation of therapeutic approaches in the context of ischaemic diseases.


Assuntos
Proteínas de Transporte/metabolismo , Endotélio Vascular/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Inflamação/metabolismo , Isquemia/metabolismo , Leucócitos/fisiologia , Retinopatia da Prematuridade/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Adesão Celular , Moléculas de Adesão Celular , Movimento Celular , Modelos Animais de Doenças , Extremidades/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia/imunologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Camundongos Knockout , Neovascularização Fisiológica , RNA Interferente Pequeno/genética , Retinopatia da Prematuridade/imunologia
10.
Thromb Haemost ; 114(6): 1241-9, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26311310

RESUMO

In proliferative retinopathies, like proliferative diabetic retinopathy and retinopathy of prematurity (ROP), the hypoxia response is sustained by the failure of the retina to revascularise its ischaemic areas. Non-resolving retina ischaemia/hypoxia results in upregulation of pro-angiogenic factors and pathologic neovascularisation with ectopic, fragile neovessels. Promoting revascularisation of the retinal avascular area could interfere with this vicious cycle and lead to vessel normalisation. Here, we examined the function of endothelial junctional adhesion molecule-C (JAM-C) in the context of ROP. Endothelial-specific JAM-C-deficient (EC-JAM-C KO) mice and littermate JAM-C-proficient (EC-JAM-C WT) mice were subjected to the ROP model. An increase in total retinal vascularisation was found at p17 owing to endothelial JAM-C deficiency, which was the result of enhanced revascularisation and vessel normalisation, thereby leading to significantly reduced avascular area in EC-JAM-C KO mice. In contrast, pathologic neovessel formation was not affected by endothelial JAM-C deficiency. Consistent with improved vessel normalisation, tip cell formation at the interface between vascular and avascular area was higher in EC-JAM-C KO mice, as compared to their littermate controls. Consistently, JAM-C inactivation in endothelial cells resulted in increased spreading on fibronectin and enhanced sprouting in vitro in a manner dependent on ß1-integrin and on the activation of the small GTPase RAP1. Together, endothelial deletion of JAM-C promoted endothelial cell sprouting, and consequently vessel normalisation and revascularisation of the hypoxic retina without altering pathologic neovascularisation. Thus, targeting endothelial JAM-C may provide a novel therapeutic strategy for promoting revascularisation and vessel normalisation in the treatment of proliferative retinopathies.


Assuntos
Endotélio Vascular/fisiopatologia , Molécula C de Adesão Juncional/deficiência , Neovascularização Patológica/fisiopatologia , Vasos Retinianos/fisiopatologia , Retinopatia da Prematuridade/fisiopatologia , Vitreorretinopatia Proliferativa/fisiopatologia , Animais , Adesão Celular , Hipóxia Celular , Linhagem Celular , Tamanho Celular , Extensões da Superfície Celular , Modelos Animais de Doenças , Células Endoteliais , Endotélio Vascular/patologia , Fibronectinas , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina beta1/fisiologia , Isquemia/fisiopatologia , Molécula C de Adesão Juncional/fisiologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/etiologia , Especificidade de Órgãos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Interferência de RNA , RNA Interferente Pequeno/genética , Vasos Retinianos/ultraestrutura , Proteínas rap1 de Ligação ao GTP/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA