Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 56(2): 167-178, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047311

RESUMO

Heart failure is a major clinical problem, with treatments involving medication, devices, and emerging neuromodulation therapies such as vagus nerve stimulation (VNS). Considering the ongoing interest in using VNS to treat cardiovascular disease, it is important to understand the genetic and molecular changes developing in the heart in response to this form of autonomic neuromodulation. This experimental animal (rat) study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity using an optogenetic approach. Vagal preganglionic neurons in the dorsal motor nucleus of the vagus nerve were genetically targeted to express light-sensitive chimeric channelrhodopsin variant ChIEF and stimulated using light. RNA sequencing of the left ventricular myocardium identified 294 differentially expressed genes (false discovery rate < 0.05). Qiagen Ingenuity Pathway Analysis (IPA) highlighted 118 canonical pathways that were significantly modulated by vagal activity, of which 14 had a z score of ≥2/≤-2, including EIF-2, IL-2, integrin, and NFAT-regulated cardiac hypertrophy. IPA revealed the effect of efferent vagus stimulation on protein synthesis, autophagy, fibrosis, autonomic signaling, inflammation, and hypertrophy. IPA further predicted that the identified differentially expressed genes were the targets of 50 upstream regulators, including transcription factors (e.g., MYC and NRF1) and microRNAs (e.g., miR-335-3p and miR-338-3p). These data demonstrate that the vagus nerve has a major impact on the myocardial expression of genes involved in the regulation of key biological pathways. The transcriptional response of the ventricular myocardium induced by stimulation of vagal efferents is consistent with the beneficial effect of maintained/increased vagal activity on the heart.NEW & NOTEWORTHY This experimental animal study investigated the immediate transcriptional response of the ventricular myocardium to selective stimulation of vagal efferent activity. Vagal stimulation induced significant transcriptional changes in the heart involving the pathways controlling autonomic signaling, inflammation, fibrosis, and hypertrophy. This study provides the first direct evidence that myocardial gene expression is modulated by the activity of the autonomic nervous system.


Assuntos
MicroRNAs , Estimulação do Nervo Vago , Ratos , Animais , Frequência Cardíaca , Coração , MicroRNAs/genética , Hipertrofia , Inflamação , Fibrose
2.
Cardiovasc Res ; 119(13): 2329-2341, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37516977

RESUMO

AIMS: The brain controls the heart by dynamic recruitment and withdrawal of cardiac parasympathetic (vagal) and sympathetic activity. Autonomic control is essential for the development of cardiovascular responses during exercise, however, the patterns of changes in the activity of the two autonomic limbs, and their functional interactions in orchestrating physiological responses during exercise, are not fully understood. The aim of this study was to characterize changes in vagal parasympathetic drive in response to exercise and exercise training by directly recording the electrical activity of vagal preganglionic neurons in experimental animals (rats). METHODS AND RESULTS: Single unit recordings were made using carbon-fibre microelectrodes from the populations of vagal preganglionic neurons of the nucleus ambiguus (NA) and the dorsal vagal motor nucleus of the brainstem. It was found that (i) vagal preganglionic neurons of the NA and the dorsal vagal motor nucleus are strongly activated during bouts of acute exercise, and (ii) exercise training markedly increases the resting activity of both populations of vagal preganglionic neurons and augments the excitatory responses of NA neurons during exercise. CONCLUSIONS: These data show that central vagal drive increases during exercise and provide the first direct neurophysiological evidence that exercise training increases vagal tone. The data argue against the notion of exercise-induced central vagal withdrawal during exercise. We propose that robust increases in the activity of vagal preganglionic neurons during bouts of exercise underlie activity-dependent plasticity, leading to higher resting vagal tone that confers multiple health benefits associated with regular exercise.


Assuntos
Fibras Autônomas Pré-Ganglionares , Nervo Vago , Ratos , Animais , Fibras Autônomas Pré-Ganglionares/fisiologia , Nervo Vago/fisiologia , Coração/fisiologia , Neurônios , Bulbo
3.
Front Mol Neurosci ; 15: 964632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117909

RESUMO

Chronic hypertension is a major risk factor for the development of neurodegenerative disease, yet the etiology of hypertension-driven neurodegeneration remains poorly understood. Forming a unique interface between the systemic circulation and the brain, the blood-cerebrospinal fluid barrier (BCSFB) at the choroid plexus (CP) has been proposed as a key site of vulnerability to hypertension that may initiate downstream neurodegenerative processes. However, our ability to understand BCSFB's role in pathological processes has, to date, been restricted by a lack of non-invasive functional measurement techniques. In this work, we apply a novel Blood-Cerebrospinal Fluid Barrier Arterial Spin Labeling (BCSFB-ASL) Magnetic resonance imaging (MRI) approach with the aim of detecting possible derangement of BCSFB function in the Spontaneous Hypertensive Rat (SHR) model using a non-invasive, translational technique. SHRs displayed a 36% reduction in BCSFB-mediated labeled arterial water delivery into ventricular cerebrospinal fluid (CSF), relative to normotensive controls, indicative of down-regulated choroid plexus function. This was concomitant with additional changes in brain fluid biomarkers, namely ventriculomegaly and changes in CSF composition, as measured by T1 lengthening. However, cortical cerebral blood flow (CBF) measurements, an imaging biomarker of cerebrovascular health, revealed no measurable change between the groups. Here, we provide the first demonstration of BCSFB-ASL in the rat brain, enabling non-invasive assessment of BCSFB function in healthy and hypertensive rats. Our data highlights the potential for BCSFB-ASL to serve as a sensitive early biomarker for hypertension-driven neurodegeneration, in addition to investigating the mechanisms relating hypertension to neurodegenerative outcomes.

4.
Adv Sci (Weinh) ; 9(6): e2104194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927381

RESUMO

Astrocytes play crucial and diverse roles in brain health and disease. The ability to selectively control astrocytes provides a valuable tool for understanding their function and has the therapeutic potential to correct dysfunction. Existing technologies such as optogenetics and chemogenetics require the introduction of foreign proteins, which adds a layer of complication and hinders their clinical translation. A novel technique, magnetomechanical stimulation (MMS), that enables remote and selective control of astrocytes without genetic modification is described here. MMS exploits the mechanosensitivity of astrocytes and triggers mechanogated Ca2+ and adenosine triphosphate (ATP) signaling by applying a magnetic field to antibody-functionalized magnetic particles that are targeted to astrocytes. Using purpose-built magnetic devices, the mechanosensory threshold of astrocytes is determined, a sub-micrometer particle for effective MMS is identified, the in vivo fate of the particles is established, and cardiovascular responses are induced in rats after particles are delivered to specific brainstem astrocytes. By eliminating the need for device implantation and genetic modification, MMS is a method for controlling astroglial activity with an improved prospect for clinical application than existing technologies.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Campos Magnéticos , Mecanotransdução Celular/fisiologia , Estimulação Física/métodos , Animais , Tronco Encefálico/fisiologia , Células Cultivadas , Feminino , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley
5.
Basic Res Cardiol ; 116(1): 32, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33942194

RESUMO

Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.


Assuntos
Arteríolas/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Membro Posterior/irrigação sanguínea , Incretinas/farmacologia , Infarto da Artéria Cerebral Média/prevenção & controle , Precondicionamento Isquêmico , AVC Isquêmico/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional
6.
Brain Stimul ; 14(1): 88-96, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33217609

RESUMO

BACKGROUND: Electrical stimulation applied to individual organs, peripheral nerves, or specific brain regions has been used to treat a range of medical conditions. In cardiovascular disease, autonomic dysfunction contributes to the disease progression and electrical stimulation of the vagus nerve has been pursued as a treatment for the purpose of restoring the autonomic balance. However, this approach lacks selectivity in activating function- and organ-specific vagal fibers and, despite promising results of many preclinical studies, has so far failed to translate into a clinical treatment of cardiovascular disease. OBJECTIVE: Here we report a successful application of optogenetics for selective stimulation of vagal efferent activity in a large animal model (sheep). METHODS AND RESULTS: Twelve weeks after viral transduction of a subset of vagal motoneurons, strong axonal membrane expression of the excitatory light-sensitive ion channel ChIEF was achieved in the efferent projections innervating thoracic organs and reaching beyond the level of the diaphragm. Blue laser or LED light (>10 mW mm-2; 1 ms pulses) applied to the cervical vagus triggered precisely timed, strong bursts of efferent activity with evoked action potentials propagating at speeds of ∼6 m s-1. CONCLUSIONS: These findings demonstrate that in species with a large, multi-fascicled vagus nerve, it is possible to stimulate a specific sub-population of efferent fibers using light at a site remote from the vector delivery, marking an important step towards eventual clinical use of optogenetic technology for autonomic neuromodulation.


Assuntos
Optogenética , Estimulação do Nervo Vago , Animais , Mamíferos , Neurônios Motores , Ratos , Ovinos , Nervo Vago
7.
J Neurosci ; 40(49): 9364-9371, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122390

RESUMO

Mechanosensitivity is a well-known feature of astrocytes, however, its underlying mechanisms and functional significance remain unclear. There is evidence that astrocytes are acutely sensitive to decreases in cerebral perfusion pressure and may function as intracranial baroreceptors, tuned to monitor brain blood flow. This study investigated the mechanosensory signaling in brainstem astrocytes, as these cells reside alongside the cardiovascular control circuits and mediate increases in blood pressure and heart rate induced by falls in brain perfusion. It was found that mechanical stimulation-evoked Ca2+ responses in astrocytes of the rat brainstem were blocked by (1) antagonists of connexin channels, connexin 43 (Cx43) blocking peptide Gap26, or Cx43 gene knock-down; (2) antagonists of TRPV4 channels; (3) antagonist of P2Y1 receptors for ATP; and (4) inhibitors of phospholipase C or IP3 receptors. Proximity ligation assay demonstrated interaction between TRPV4 and Cx43 channels in astrocytes. Dye loading experiments showed that mechanical stimulation increased open probability of carboxyfluorescein-permeable membrane channels. These data suggest that mechanosensory Ca2+ responses in astrocytes are mediated by interaction between TRPV4 and Cx43 channels, leading to Cx43-mediated release of ATP which propagates/amplifies Ca2+ signals via P2Y1 receptors and Ca2+ recruitment from the intracellular stores. In astrocyte-specific Cx43 knock-out mice the magnitude of heart rate responses to acute increases in intracranial pressure was not affected by Cx43 deficiency. However, these animals displayed lower heart rates at different levels of cerebral perfusion, supporting the hypothesis of connexin hemichannel-mediated release of signaling molecules by astrocytes having an excitatory action on the CNS sympathetic control circuits.SIGNIFICANCE STATEMENT There is evidence suggesting that astrocytes may function as intracranial baroreceptors that play an important role in the control of systemic and cerebral circulation. To function as intracranial baroreceptors, astrocytes must possess a specialized membrane mechanism that makes them exquisitely sensitive to mechanical stimuli. This study shows that opening of connexin 43 (Cx43) hemichannels leading to the release of ATP is the key central event underlying mechanosensory Ca2+ responses in astrocytes. This astroglial mechanism plays an important role in the autonomic control of heart rate. These data add to the growing body of evidence suggesting that astrocytes function as versatile surveyors of the CNS metabolic milieu, tuned to detect conditions of potential metabolic threat, such as hypoxia, hypercapnia, and reduced perfusion.


Assuntos
Astrócitos/fisiologia , Mecanotransdução Celular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Circulação Cerebrovascular/fisiologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Feminino , Frequência Cardíaca/fisiologia , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Knockout , Peptídeos/antagonistas & inibidores , Peptídeos/genética , Estimulação Física , Ratos , Receptores Purinérgicos P2Y1/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
8.
Nat Commun ; 11(1): 131, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919423

RESUMO

Astrocytes provide neurons with essential metabolic and structural support, modulate neuronal circuit activity and may also function as versatile surveyors of brain milieu, tuned to sense conditions of potential metabolic insufficiency. Here we show that astrocytes detect falling cerebral perfusion pressure and activate CNS autonomic sympathetic control circuits to increase systemic arterial blood pressure and heart rate with the purpose of maintaining brain blood flow and oxygen delivery. Studies conducted in experimental animals (laboratory rats) show that astrocytes respond to acute decreases in brain perfusion with elevations in intracellular [Ca2+]. Blockade of Ca2+-dependent signaling mechanisms in populations of astrocytes that reside alongside CNS sympathetic control circuits prevents compensatory increases in sympathetic nerve activity, heart rate and arterial blood pressure induced by reductions in cerebral perfusion. These data suggest that astrocytes function as intracranial baroreceptors and play an important role in homeostatic control of arterial blood pressure and brain blood flow.


Assuntos
Astrócitos/fisiologia , Pressão Sanguínea/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Frequência Cardíaca/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Hemodinâmica , Homeostase , Ratos , Ratos Sprague-Dawley , Sistema Nervoso Simpático/fisiologia
9.
Sci Rep ; 8(1): 400, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321559

RESUMO

Neuronal cell groups residing within the retrotrapezoid nucleus (RTN) and C1 area of the rostral ventrolateral medulla oblongata contribute to the maintenance of resting respiratory activity and arterial blood pressure, and play an important role in the development of cardiorespiratory responses to metabolic challenges (such as hypercapnia and hypoxia). In rats, acute silencing of neurons within the parafacial region which includes the RTN and the rostral aspect of the C1 circuit (pFRTN/C1), transduced to express HM4D (Gi-coupled) receptors, was found to dramatically reduce exercise capacity (by 60%), determined by an intensity controlled treadmill running test. In a model of simulated exercise (electrical stimulation of the sciatic or femoral nerve in urethane anaesthetised spontaneously breathing rats) silencing of the pFRTN/C1 neurons had no effect on cardiovascular changes, but significantly reduced the respiratory response during steady state exercise. These results identify a neuronal cell group in the lower brainstem which is critically important for the development of the respiratory response to exercise and, determines exercise capacity.


Assuntos
Teste de Esforço/métodos , Bulbo/fisiologia , Respiração , Animais , Frequência Cardíaca , Núcleos Intralaminares do Tálamo/fisiologia , Masculino , Modelos Animais , Ratos
10.
Glia ; 66(6): 1185-1199, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29274121

RESUMO

Astrocytes support neuronal function by providing essential structural and nutritional support, neurotransmitter trafficking and recycling and may also contribute to brain information processing. In this article we review published results and report new data suggesting that astrocytes function as versatile metabolic sensors of central nervous system (CNS) milieu and play an important role in the maintenance of brain metabolic homeostasis. We discuss anatomical and functional features of astrocytes that allow them to detect and respond to changes in the brain parenchymal levels of metabolic substrates (oxygen and glucose), and metabolic waste products (carbon dioxide). We report data suggesting that astrocytes are also sensitive to circulating endocrine signals-hormones like ghrelin, glucagon-like peptide-1 and leptin, that have a major impact on the CNS mechanisms controlling food intake and energy balance. We discuss signaling mechanisms that mediate communication between astrocytes and neurons and consider how these mechanisms are recruited by astrocytes activated in response to various metabolic challenges. We review experimental data suggesting that astrocytes modulate the activities of the respiratory and autonomic neuronal networks that ensure adaptive changes in breathing and sympathetic drive in order to support the physiological and behavioral demands of the organism in ever-changing environmental conditions. Finally, we discuss evidence suggesting that altered astroglial function may contribute to the pathogenesis of disparate neurological, respiratory and cardiovascular disorders such as Rett syndrome and systemic arterial hypertension.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Animais , Humanos
11.
J Physiol ; 594(14): 4017-30, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26940639

RESUMO

KEY POINTS: The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under ß-adrenoceptor blockade combined with spinal cord (C1) transection (to remove sympathetic influences), systemic administration of atropine increased left ventricular contractility in rats anaesthetized with urethane, confirming the existence of a tonic inhibitory muscarinic influence on cardiac inotropy. Increased left ventricular contractility in anaesthetized rats was observed when DVMN neurones were silenced. Functional neuroanatomical mapping revealed that vagal preganglionic neurones that have an impact on left ventricular contractility are located in the caudal region of the left DVMN. These neurones provide functionally significant parasympathetic control of left ventricular inotropy. ABSTRACT: The strength, functional significance and origins of direct parasympathetic innervation of the left ventricle (LV) remain controversial. In the present study we used an anaesthetized rat model to first confirm the presence of tonic inhibitory vagal influence on LV inotropy. Using genetic neuronal targeting and functional neuroanatomical mapping we tested the hypothesis that parasympathetic control of LV contractility is provided by vagal preganglionic neurones located in the dorsal motor nucleus (DVMN). It was found that under systemic ß-adrenoceptor blockade (atenolol) combined with spinal cord (C1) transection (to remove sympathetic influences), intravenous administration of atropine increases LV contractility in rats anaesthetized with urethane, but not in animals anaesthetized with pentobarbital. Increased LV contractility in rats anaesthetized with urethane was also observed when DVMN neurones targeted bilaterally to express an inhibitory Drosophila allatostatin receptor were silenced by application of an insect peptide allatostatin. Microinjections of glutamate and muscimol to activate or inhibit neuronal cell bodies in distinct locations along the rostro-caudal extent of the left and right DVMN revealed that vagal preganglionic neurones, which have an impact on LV contractility, are located in the caudal region of the left DVMN. Changes in LV contractility were only observed when this subpopulation of DVMN neurones was activated or inhibited. These data confirm the existence of a tonic inhibitory muscarinic influence on LV contractility. Activity of a subpopulation of DVMN neurones provides functionally significant parasympathetic control of LV contractile function.


Assuntos
Ventrículos do Coração , Nervo Vago/fisiologia , Função Ventricular , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Atenolol/farmacologia , Atropina/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Ácido Glutâmico/farmacologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/efeitos dos fármacos , Masculino , Antagonistas Muscarínicos/farmacologia , Muscimol/farmacologia , Contração Miocárdica/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/farmacologia , Ratos Sprague-Dawley , Ultrassonografia , Função Ventricular/efeitos dos fármacos
12.
J Neurosci ; 35(29): 10460-73, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26203141

RESUMO

In terrestrial mammals, the oxygen storage capacity of the CNS is limited, and neuronal function is rapidly impaired if oxygen supply is interrupted even for a short period of time. However, oxygen tension monitored by the peripheral (arterial) chemoreceptors is not sensitive to regional CNS differences in partial pressure of oxygen (PO2 ) that reflect variable levels of neuronal activity or local tissue hypoxia, pointing to the necessity of a functional brain oxygen sensor. This experimental animal (rats and mice) study shows that astrocytes, the most numerous brain glial cells, are sensitive to physiological changes in PO2 . Astrocytes respond to decreases in PO2 a few millimeters of mercury below normal brain oxygenation with elevations in intracellular calcium ([Ca(2+)]i). The hypoxia sensor of astrocytes resides in the mitochondria in which oxygen is consumed. Physiological decrease in PO2 inhibits astroglial mitochondrial respiration, leading to mitochondrial depolarization, production of free radicals, lipid peroxidation, activation of phospholipase C, IP3 receptors, and release of Ca(2+) from the intracellular stores. Hypoxia-induced [Ca(2+)]i increases in astrocytes trigger fusion of vesicular compartments containing ATP. Blockade of astrocytic signaling by overexpression of ATP-degrading enzymes or targeted astrocyte-specific expression of tetanus toxin light chain (to interfere with vesicular release mechanisms) within the brainstem respiratory rhythm-generating circuits reveals the fundamental physiological role of astroglial oxygen sensitivity; in low-oxygen conditions (environmental hypoxia), this mechanism increases breathing activity even in the absence of peripheral chemoreceptor oxygen sensing. These results demonstrate that astrocytes are functionally specialized CNS oxygen sensors tuned for rapid detection of physiological changes in brain oxygenation. Significance statement: Most, if not all, animal cells possess mechanisms that allow them to detect decreases in oxygen availability leading to slow-timescale, adaptive changes in gene expression and cell physiology. To date, only two types of mammalian cells have been demonstrated to be specialized for rapid functional oxygen sensing: glomus cells of the carotid body (peripheral respiratory chemoreceptors) that stimulate breathing when oxygenation of the arterial blood decreases; and pulmonary arterial smooth muscle cells responsible for hypoxic pulmonary vasoconstriction to limit perfusion of poorly ventilated regions of the lungs. Results of the present study suggest that there is another specialized oxygen-sensitive cell type in the body, the astrocyte, that is tuned for rapid detection of physiological changes in brain oxygenation.


Assuntos
Astrócitos/metabolismo , Células Quimiorreceptoras/metabolismo , Oxigênio/metabolismo , Fenômenos Fisiológicos Respiratórios , Animais , Hipóxia Celular/fisiologia , Células Cultivadas , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
13.
Eur J Pharmacol ; 761: 268-72, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26068549

RESUMO

Respiratory depression remains an important clinical problem that limits the use of opiate analgesia. Activation of AMPA glutamate receptors has been shown to reverse fentanyl-induced respiratory changes. Here, we explored whether tianeptine, a drug known for its ability to phosphorylate AMPA receptors, can be used to prevent opiate-induced respiratory depression. A model of respiratory depression in conscious rats was produced by administration of morphine (10mg/kg, i.p.). Rats were pre-treated with test compounds or control solutions 5min prior to administration of morphine. Respiratory activity was measured using whole-body plethysmography. In conscious animals, tianeptine (2 and 10mg/kg, ip) and DP-201 (2-(4-((3-chloro-6-methyl-5,5-dioxido-6,11-dihydrodibenzo[c,f][1,2] thiazepin-11-yl)amino)butoxy)acetic acid; tianeptine analogue; 2mg/kg, ip) triggered significant (~30%) increases in baseline respiratory activity and prevented morphine-induced respiratory depression. These effects were similar to those produced by an ampakine CX-546 (15mg/kg, ip). The antinociceptive effect of morphine (hot plate test) was unaffected by tianeptine pre-treatment. In conclusion, the results of the experiments conducted in conscious rats demonstrate that systemic administration of tianeptine increases respiratory output and prevents morphine-induced respiratory depression without interfering with the antinociceptive effect of opiates.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Pulmão/efeitos dos fármacos , Morfina , Limiar da Dor/efeitos dos fármacos , Respiração/efeitos dos fármacos , Insuficiência Respiratória/prevenção & controle , Tiazepinas/farmacologia , Animais , Dioxanos/farmacologia , Dioxóis , Modelos Animais de Doenças , Pulmão/fisiopatologia , Masculino , Fosforilação , Piperidinas/farmacologia , Pletismografia Total , Ratos Sprague-Dawley , Receptores de AMPA/agonistas , Receptores de AMPA/metabolismo , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/fisiopatologia , Fatores de Tempo
14.
Cardiovasc Res ; 91(4): 703-10, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21543384

RESUMO

AIMS: Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. METHODS AND RESULTS: In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO(2)-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. CONCLUSION: These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO(2).


Assuntos
Neurônios Adrenérgicos/fisiologia , Bulbo/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Pressão Sanguínea , Dióxido de Carbono/fisiologia , Proteínas de Fluorescência Verde/análise , Hipercapnia/fisiopatologia , Masculino , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
15.
J Physiol ; 586(16): 3963-78, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18617567

RESUMO

The Breuer-Hering inflation reflex is initiated by activation of the slowly adapting pulmonary stretch receptor afferents (SARs), which monosynaptically activate second-order relay neurones in the dorsal medullary nucleus of the solitary tract (NTS). Here we demonstrate that during lung inflation SARs release both ATP and glutamate from their central terminals to activate these NTS neurones. In anaesthetized and artificially ventilated rats, ATP- and glutamate-selective microelectrode biosensors placed in the NTS detected rhythmic release of both transmitters phase-locked to lung inflation. This release of ATP and glutamate was independent of the centrally generated respiratory rhythm and could be reversibly abolished during the blockade of the afferent transmission in the vagus nerve by topical application of local anaesthetic. Microionophoretic application of ATP increased the activity of all tested NTS second-order relay neurones which receive monosynaptic inputs from the SARs. Unilateral microinjection of ATP into the NTS site where pulmonary stretch receptor afferents terminate produced central apnoea, mimicking the effect of lung inflation. Application of P2 and glutamate receptor antagonists (pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulphonic acid, suramin and kynurenic acid) significantly decreased baseline lung inflation-induced firing of the second-order relay neurones. These data demonstrate that ATP and glutamate are released in the NTS from the central terminals of the lung stretch receptor afferents, activate the second-order relay neurones and hence mediate the key respiratory reflex - the Breuer-Hering inflation reflex.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Glutâmico/metabolismo , Pulmão/inervação , Pulmão/fisiologia , Nervo Frênico/fisiologia , Reflexo de Estiramento/fisiologia , Núcleo Solitário/fisiologia , Vias Aferentes/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA