Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Geroscience ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753230

RESUMO

Genetically heterogeneous UM-HET3 mice born in 2020 were used to test possible lifespan effects of alpha-ketoglutarate (AKG), 2,4-dinitrophenol (DNP), hydralazine (HYD), nebivolol (NEBI), 16α-hydroxyestriol (OH_Est), and sodium thiosulfate (THIO), and to evaluate the effects of canagliflozin (Cana) when started at 16 months of age. OH_Est produced a 15% increase (p = 0.0001) in median lifespan in males but led to a significant (7%) decline in female lifespan. Cana, started at 16 months, also led to a significant increase (14%, p = 0.004) in males and a significant decline (6%, p = 0.03) in females. Cana given to mice at 6 months led, as in our previous study, to an increase in male lifespan without any change in female lifespan, suggesting that this agent may lead to female-specific late-life harm. We found that blood levels of Cana were approximately 20-fold higher in aged females than in young males, suggesting a possible mechanism for the sex-specific disparities in its effects. NEBI was also found to produce a female-specific decline (4%, p = 0.03) in lifespan. None of the other tested drugs provided a lifespan benefit in either sex. These data bring to 7 the list of ITP-tested drugs that induce at least a 10% lifespan increase in one or both sexes, add a fourth drug with demonstrated mid-life benefits on lifespan, and provide a testable hypothesis that might explain the sexual dimorphism in lifespan effects of the SGLT2 inhibitor Cana.

2.
PLoS Genet ; 20(4): e1011248, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662777

RESUMO

The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.


Assuntos
Arsênio , Estresse Oxidativo , Locos de Características Quantitativas , Animais , Camundongos , Arsênio/toxicidade , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Linhagem Celular , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Interação Gene-Ambiente , Intoxicação por Arsênico/genética , Mapeamento Cromossômico
3.
Artigo em Inglês | MEDLINE | ID: mdl-38660803

RESUMO

BACKGROUND: RAB27A, a modulator of secretion, is expressed within vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.

4.
Mol Biol Cell ; 35(6): ar80, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38598293

RESUMO

The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display structural abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.


Assuntos
Actinas , Autofagossomos , Autofagia , Rim , Camundongos Knockout , Animais , Camundongos , Actinas/metabolismo , Autofagia/fisiologia , Humanos , Autofagossomos/metabolismo , Rim/metabolismo , Masculino , Túbulos Renais Proximais/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Polimerização , Fibroblastos/metabolismo
5.
Aging (Albany NY) ; 16(6): 4948-4964, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38535998

RESUMO

Methylene blue (MB) is a well-established antioxidant that has been shown to improve mitochondrial function in both in vitro and in vivo settings. Mitoquinone (MitoQ) is a selective antioxidant that specifically targets mitochondria and effectively reduces the accumulation of reactive oxygen species. To investigate the effect of long-term administration of MB on skeletal morphology, we administered MB to aged (18 months old) female C57BL/J6 mice, as well as to adult male and female mice with a genetically diverse background (UM-HET3). Additionally, we used MitoQ as an alternative approach to target mitochondrial oxidative stress during aging in adult female and male UM-HET3 mice. Although we observed some beneficial effects of MB and MitoQ in vitro, the administration of these compounds in vivo did not alter the progression of age-induced bone loss. Specifically, treating 18-month-old female mice with MB for 6 or 12 months did not have an effect on age-related bone loss. Similarly, long-term treatment with MB from 7 to 22 months or with MitoQ from 4 to 22 months of age did not affect the morphology of cortical bone at the mid-diaphysis of the femur, trabecular bone at the distal-metaphysis of the femur, or trabecular bone at the lumbar vertebra-5 in UM-HET3 mice. Based on our findings, it appears that long-term treatment with MB or MitoQ alone, as a means to reduce skeletal oxidative stress, is insufficient to inhibit age-associated bone loss. This supports the notion that interventions solely with antioxidants may not provide adequate protection against skeletal aging.


Assuntos
Antioxidantes , Doenças Mitocondriais , Compostos Organofosforados , Ubiquinona/análogos & derivados , Masculino , Feminino , Camundongos , Animais , Antioxidantes/farmacologia , Azul de Metileno/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Envelhecimento
6.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328079

RESUMO

The actin cytoskeleton is essential for many functions of eukaryotic cells, but the factors that nucleate actin assembly are not well understood at the organismal level or in the context of disease. To explore the function of the actin nucleation factor WHAMM in mice, we examined how Whamm inactivation impacts kidney physiology and cellular proteostasis. We show that male WHAMM knockout mice excrete elevated levels of albumin, glucose, phosphate, and amino acids, and display abnormalities of the kidney proximal tubule, suggesting that WHAMM activity is important for nutrient reabsorption. In kidney tissue, the loss of WHAMM results in the accumulation of the lipidated autophagosomal membrane protein LC3, indicating an alteration in autophagy. In mouse fibroblasts and human proximal tubule cells, WHAMM and its binding partner the Arp2/3 complex control autophagic membrane closure and cargo receptor recruitment. These results reveal a role for WHAMM-mediated actin assembly in maintaining kidney function and promoting proper autophagosome membrane remodeling.

7.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370707

RESUMO

Aging studies in mammalian models often depend on natural lifespan data as a primary outcome. Tools for lifespan prediction could accelerate these studies and reduce the need for veterinary intervention. Here, we leveraged large-scale longitudinal frailty and lifespan data on two genetically distinct mouse cohorts to evaluate noninvasive strategies to predict life expectancy in mice. We applied a modified frailty assessment, the Fragility Index, derived from existing frailty indices with additional deficits selected by veterinarians. We developed an ensemble machine learning classifier to predict imminent mortality (95% proportion of life lived [95PLL]). Our algorithm represented improvement over previous predictive criteria but fell short of the level of reliability that would be needed to make advanced prediction of lifespan and thus accelerate lifespan studies. Highly sensitive and specific frailty-based predictive endpoint criteria for aged mice remain elusive. While frailty-based prediction falls short as a surrogate for lifespan, it did demonstrate significant predictive power and as such must contain information that could be used to inform the conclusion of aging experiments. We propose a frailty-based measure of healthspan as an alternative target for aging research and demonstrate that lifespan and healthspan criteria reveal distinct aspects of aging in mice.

8.
Geroscience ; 46(1): 795-816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041783

RESUMO

In genetically heterogeneous (UM-HET3) mice produced by the CByB6F1 × C3D2F1 cross, the Nrf2 activator astaxanthin (Asta) extended the median male lifespan by 12% (p = 0.003, log-rank test), while meclizine (Mec), an mTORC1 inhibitor, extended the male lifespan by 8% (p = 0.03). Asta was fed at 1840 ± 520 (9) ppm and Mec at 544 ± 48 (9) ppm, stated as mean ± SE (n) of independent diet preparations. Both were started at 12 months of age. The 90th percentile lifespan for both treatments was extended in absolute value by 6% in males, but neither was significant by the Wang-Allison test. Five other new agents were also tested as follows: fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate. None of these increased lifespan significantly at the dose and method of administration tested in either sex. Amounts of dimethyl fumarate in the diet averaged 35% of the target dose, which may explain the absence of lifespan effects. Body weight was not significantly affected in males by any of the test agents. Late life weights were lower in females fed Asta and Mec, but lifespan was not significantly affected in these females. The male-specific lifespan benefits from Asta and Mec may provide insights into sex-specific aspects of aging.


Assuntos
Flavonóis , Sulfeto de Hidrogênio , Longevidade , Fenilbutiratos , Feminino , Camundongos , Masculino , Animais , Meclizina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Fumarato de Dimetilo/farmacologia , Ácido Micofenólico/farmacologia , Xantofilas
9.
Geroscience ; 46(2): 2571-2581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38103095

RESUMO

The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture. This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.


Assuntos
Envelhecimento , Aprendizado de Máquina , Camundongos , Animais , Envelhecimento/patologia , Rim
10.
Nat Commun ; 14(1): 8338, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097593

RESUMO

Tryptophan metabolism through the kynurenine pathway influences molecular processes critical to healthy aging including immune signaling, redox homeostasis, and energy production. Aberrant kynurenine metabolism occurs during normal aging and is implicated in many age-associated pathologies including chronic inflammation, atherosclerosis, neurodegeneration, and cancer. We and others previously identified three kynurenine pathway genes-tdo-2, kynu-1, and acsd-1-for which decreasing expression extends lifespan in invertebrates. Here we report that knockdown of haao-1, a fourth gene encoding the enzyme 3-hydroxyanthranilic acid (3HAA) dioxygenase (HAAO), extends lifespan by ~30% and delays age-associated health decline in Caenorhabditis elegans. Lifespan extension is mediated by increased physiological levels of the HAAO substrate 3HAA. 3HAA increases oxidative stress resistance and activates the Nrf2/SKN-1 oxidative stress response. In pilot studies, female Haao knockout mice or aging wild type male mice fed 3HAA supplemented diet were also long-lived. HAAO and 3HAA represent potential therapeutic targets for aging and age-associated disease.


Assuntos
Proteínas de Caenorhabditis elegans , Cinurenina , Animais , Masculino , Feminino , Camundongos , Cinurenina/metabolismo , Triptofano/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Longevidade/genética , Camundongos Knockout , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
11.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961129

RESUMO

Aging is the greatest risk factor for breast cancer; however, how age-related cellular and molecular events impact cancer initiation is unknown. We investigate how aging rewires transcriptomic and epigenomic programs of mouse mammary glands at single cell resolution, yielding a comprehensive resource for aging and cancer biology. Aged epithelial cells exhibit epigenetic and transcriptional changes in metabolic, pro-inflammatory, or cancer-associated genes. Aged stromal cells downregulate fibroblast marker genes and upregulate markers of senescence and cancer-associated fibroblasts. Among immune cells, distinct T cell subsets (Gzmk+, memory CD4+, γδ) and M2-like macrophages expand with age. Spatial transcriptomics reveal co-localization of aged immune and epithelial cells in situ. Lastly, transcriptional signatures of aging mammary cells are found in human breast tumors, suggesting mechanistic links between aging and cancer. Together, these data uncover that epithelial, immune, and stromal cells shift in proportions and cell identity, potentially impacting cell plasticity, aged microenvironment, and neoplasia risk.

12.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38014303

RESUMO

Genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening as they offer power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.

13.
Aging Cell ; 22(12): e13990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37740454

RESUMO

Age-associated alterations in bladder control affect millions of older adults, with a heavy burden added to families both economically and in quality of life. Therapeutic options are limited with poor efficacy in older adults, lending to a growing need to address the gaps in our current understanding of urinary tract aging. This review summarizes the current knowledge of age-associated alterations in the structure and function of the brain-bladder axis and identifies important gaps in the field that have yet to be addressed. Urinary aging is associated with decreased tissue responsiveness, decreased control over the voiding reflex, signaling dysfunction along the brain-bladder axis, and structural changes within the bladder wall. Studies are needed to improve our understanding of how age affects the brain-bladder axis and identify genetic targets that correlate with functional outcomes.


Assuntos
Bexiga Urinária , Sistema Urinário , Humanos , Idoso , Qualidade de Vida , Envelhecimento , Encéfalo
14.
Cell Rep ; 42(7): 112715, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37405913

RESUMO

Maintenance of protein homeostasis degrades with age, contributing to aging-related decline and disease. Previous studies have primarily surveyed transcriptional aging changes. To define the effects of age directly at the protein level, we perform discovery-based proteomics in 10 tissues from 20 C57BL/6J mice, representing both sexes at adult and late midlife ages (8 and 18 months). Consistent with previous studies, age-related changes in protein abundance often have no corresponding transcriptional change. Aging results in increases in immune proteins across all tissues, consistent with a global pattern of immune infiltration with age. Our protein-centric data reveal tissue-specific aging changes with functional consequences, including altered endoplasmic reticulum and protein trafficking in the spleen. We further observe changes in the stoichiometry of protein complexes with important roles in protein homeostasis, including the CCT/TriC complex and large ribosomal subunit. These data provide a foundation for understanding how proteins contribute to systemic aging across tissues.


Assuntos
Proteoma , Proteostase , Masculino , Feminino , Animais , Camundongos , Proteoma/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo
15.
bioRxiv ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37461572

RESUMO

The ability to quantify aging-related changes in histological samples is important, as it allows for evaluation of interventions intended to effect health span. We used a machine learning architecture that can be trained to detect and quantify these changes in the mouse kidney. Using additional held out data, we show validation of our model, correlation with scores given by pathologists using the Geropathology Research Network aging grading scheme, and its application in providing reproducible and quantifiable age scores for histological samples. Aging quantification also provides the insights into possible changes in image appearance that are independent of specific geropathology-specified lesions. Furthermore, we provide trained classifiers for H&E-stained slides, as well as tutorials on how to use these and how to create additional classifiers for other histological stains and tissues using our architecture.This architecture and combined resources allow for the high throughput quantification of mouse aging studies in general and specifically applicable to kidney tissues.

16.
Geroscience ; 45(3): 2079-2084, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079216

RESUMO

Chow diet is used in the majority of rodent studies and, although assumed to be standardized for dietary source and nutritional contents, it varies widely across commercial formulations. Similarly, current approaches to study aging in rodents involve a single-diet formulation across the lifespan and overlook age-specific nutritional requirements, which may have long-term effects on aging processes. Together, these nutrition-based disparities represent major gaps in geroscience research, affecting the interpretation and reproducibility of the studies. This perspective aims to raise awareness on the importance of rodent diet formulation and proposes that geroscientists include detailed descriptions of all experimental diets and feeding protocols. Detailed reporting of diets will enhance rigor and reproducibility of aging rodent studies and lead to more translational outcomes in geroscience research.


Assuntos
Dieta , Roedores , Animais , Camundongos , Reprodutibilidade dos Testes , Envelhecimento , Longevidade
17.
Cancer Cell ; 41(4): 641-645, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37001528

RESUMO

Age is among the main risk factors for cancer, and any cancer study in adults is faced with an aging tissue and organism. Yet, pre-clinical studies are carried out using young mice and are not able to address the impact of aging and associated comorbidities on disease biology and treatment outcomes. Here, we discuss the limitations of current mouse cancer models and suggest strategies for developing novel models to address these major gaps in knowledge and experimental approaches.


Assuntos
Envelhecimento , Neoplasias , Animais , Camundongos , Neoplasias/genética , Modelos Animais de Doenças , Fatores de Risco
18.
Aging Cell ; 22(4): e13792, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840360

RESUMO

Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.


Assuntos
Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Animais , Humanos , Camundongos , Envelhecimento/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional
19.
Front Zool ; 19(1): 30, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451195

RESUMO

Unique genetic adaptations are present in bears of every species across the world. From (nearly) shutting down important organs during hibernation to preventing harm from lifestyles that could easily cause metabolic diseases in humans, bears may hold the answer to various human ailments. However, only a few of these unique traits are currently being investigated at the molecular level, partly because of the lack of necessary tools. One of these tools is well-annotated genome assemblies from the different, extant bear species. These reference genomes are needed to allow us to identify differences in genetic variants, isoforms, gene expression, and genomic features such as transposons and identify those that are associated with biomedical-relevant traits. In this review we assess the current state of the genome assemblies of the eight different bear species, discuss current gaps, and the future benefits these reference genomes may have in informing human biomedical applications, while at the same time improving bear conservation efforts.

20.
Kidney Int ; 102(1): 38-44, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429495

RESUMO

The mouse is the most commonly used mammalian model to study disease, including kidney disease. However, close attention needs to be paid to the differences and effects of genetic background. The default choice of most investigators is to use C57BL/6 mice, but not all C57BL/6 mice are the same. Ever since the C57BL/6 line was first established, differences in the genetic background have risen between substrains, which have major implications in the phenotypes expressed in kidney disease. Furthermore, considering that C57BL/6 substrains are relatively resistant to kidney damage, there can be major benefits in selecting other mouse inbred strains when studying kidney disease. These strains can show more similar responses regarding kidney damage as in humans, and results may therefore translate better to human application. Genetically diverse mice, such as the Diversity Outbred mice, allow investigators to study kidney phenotypes with comparable levels of genetic diversity as seen in humans, which yield results that more closely reflect the variation in human disease outcomes due to genetic variation. Hence, embracing the genetic diversity that is present in mice can lead to better translational research methods. Investigators need to always take into consideration that genetic background is a variable that can alter results significantly, and optimization of translational research asks for careful strain selection and more rigorous reporting of the genetic background that is being used in experiment.


Assuntos
Patrimônio Genético , Nefropatias , Animais , Modelos Animais de Doenças , Variação Genética , Nefropatias/genética , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA