Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 1: 21, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271908

RESUMO

Estimations of tropical insect diversity generally suffer from lack of known groups or faunas against which extrapolations can be made, and have seriously underestimated the diversity of some taxa. Here we report the intensive inventory of a four-hectare tropical cloud forest in Costa Rica for one year, which yielded 4332 species of Diptera, providing the first verifiable basis for diversity of a major group of insects at a single site in the tropics. In total 73 families were present, all of which were studied to the species level, providing potentially complete coverage of all families of the order likely to be present at the site. Even so, extrapolations based on our data indicate that with further sampling, the actual total for the site could be closer to 8000 species. Efforts to completely sample a site, although resource-intensive and time-consuming, are needed to better ground estimations of world biodiversity based on limited sampling.

2.
Zootaxa ; 4402(1): 53-90, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29690278

RESUMO

Study of all flies (Diptera) collected for one year from a four-hectare (150 x 266 meter) patch of cloud forest at 1,600 meters above sea level at Zurquí de Moravia, San José Province, Costa Rica (hereafter referred to as Zurquí), revealed an astounding 4,332 species. This amounts to more than half the number of named species of flies for all of Central America. Specimens were collected with two Malaise traps running continuously and with a wide array of supplementary collecting methods for three days of each month. All morphospecies from all 73 families recorded were fully curated by technicians before submission to an international team of 59 taxonomic experts for identification.        Overall, a Malaise trap on the forest edge captured 1,988 species or 51% of all collected dipteran taxa (other than of Phoridae, subsampled only from this and one other Malaise trap). A Malaise trap in the forest sampled 906 species. Of other sampling methods, the combination of four other Malaise traps and an intercept trap, aerial/hand collecting, 10 emergence traps, and four CDC light traps added the greatest number of species to our inventory. This complement of sampling methods was an effective combination for retrieving substantial numbers of species of Diptera. Comparison of select sampling methods (considering 3,487 species of non-phorid Diptera) provided further details regarding how many species were sampled by various methods.        Comparison of species numbers from each of two permanent Malaise traps from Zurquí with those of single Malaise traps at each of Tapantí and Las Alturas, 40 and 180 km distant from Zurquí respectively, suggested significant species turnover. Comparison of the greater number of species collected in all traps from Zurquí did not markedly change the degree of similarity between the three sites, although the actual number of species shared did increase.        Comparisons of the total number of named and unnamed species of Diptera from four hectares at Zurquí is equivalent to 51% of all flies named from Central America, greater than all the named fly fauna of Colombia, equivalent to 14% of named Neotropical species and equal to about 2.7% of all named Diptera worldwide. Clearly the number of species of Diptera in tropical regions has been severely underestimated and the actual number may surpass the number of species of Coleoptera.        Various published extrapolations from limited data to estimate total numbers of species of larger taxonomic categories (e.g., Hexapoda, Arthropoda, Eukaryota, etc.) are highly questionable, and certainly will remain uncertain until we have more exhaustive surveys of all and diverse taxa (like Diptera) from multiple tropical sites.        Morphological characterization of species in inventories provides identifications placed in the context of taxonomy, phylogeny, form, and ecology. DNA barcoding species is a valuable tool to estimate species numbers but used alone fails to provide a broader context for the species identified.


Assuntos
Dípteros , Animais , Biodiversidade , América Central , Colômbia , Costa Rica , Florestas
3.
Mol Phylogenet Evol ; 113: 84-112, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28539260

RESUMO

Current hypotheses of relationship among the species of the fruit fly genera Anastrepha and Toxotrypana are tested using sequence data from six DNA regions: the mitochondrial regions 16S, CAD, and COI, and the nuclear regions EF1a, PER, and PGD. DNA sequences were obtained from 146 species of Anastrepha, representing 19 of the 21 species groups as well as five of the six clades of the robusta group, and four species of Toxotrypana in addition to species of Hexachaeta, Pseudophorellia, Alujamyia, and 13 other tephritid genera used as outgroups. The results indicate that Hexachaeta is more closely related to the Molynocoelia group than to Toxotrypana and Anastrepha, and it is removed from the tribe Toxotrypanini. The group Anastrepha+Toxotrypana and the genus Toxotrypana are strongly supported as monophyletic, consistent with previous studies, but Toxotrypana arises within Anastrepha, confirming that Anastrepha as currently defined is paraphyletic. The placement of Toxotrypana within Anastrepha is clearly defined for the first time with high support, as the sister group to the cryptostrepha clade of the robusta group of Anastrepha. Within Anastrepha, the daciformis, dentata, leptozona, raveni, and striata species groups are highly supported clades. The serpentina group is recognized with lower support, and the fraterculus and pseudoparallela groups are supported with minor alterations. The robusta group is resolved as polyphyletic, but four of the six species clades within it are recovered monophyletic (one clade is not represented and another is represented by one species). The punctata and panamensis groups are resolved together in a clade. At least some species of the mucronota group are related, however this group requires further study. The benjamini, grandis, and spatulata groups appear to be polyphyletic. Relationships among the species groups are generally poorly resolved, with the following exceptions: (1) the lineage including Toxotrypana, the cryptostrepha clade, and the tripunctata group; (2) the sister group relationship of the daciformis+dentata groups; (3) a clade comprising the punctata and panamensis groups; and (4) the large clade comprising the pseudoparallela+spatulata+ramosa+grandis+serpentina+striata+fraterculus groups.


Assuntos
Filogenia , Tephritidae/classificação , Tephritidae/genética , Animais , Funções Verossimilhança , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA