Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Sci Pollut Res Int ; 31(36): 48813-48838, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39052110

RESUMO

The increase in the prevalence of carbapenem-resistant Gram-negative bacteria, in particular Acinetobacter baumannii (CRAB) and Pseudomonas aeruginosa (CRPA), poses a serious threat for public health worldwide. This article reviews the alarming data on the prevalence of infections caused by CRAB and CRPA pathogens and their presence in hospital and municipal wastewater, and it highlights the environmental impact of antibiotic resistance. The article describes the key role of antibiotic resistance genes (ARGs) in the acquisition of carbapenem resistance and sheds light on bacterial resistance mechanisms. The main emphasis was placed on the transfer of ARGs not only in the clinical setting, but also in the environment, including water, soil, and food. The aim of this review was to expand our understanding of the global health risks associated with CRAB and CRPA in hospital and municipal wastewater and to analyze the spread of these micropollutants in the environment. A review of the literature published in the last decade will direct research on carbapenem-resistant pathogens, support the implementation of effective preventive measures and interventions, and contribute to the development of improved strategies for managing this problem.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Pseudomonas aeruginosa , Águas Residuárias , Águas Residuárias/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Carbapenêmicos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Hospitais , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Humanos
2.
Int J Hyg Environ Health ; 261: 114423, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39038407

RESUMO

Antimicrobial resistance (AMR) is a global problem that gives serious cause for concern. Hospital wastewater (HWW) is an important link between the clinical setting and the natural environment, and an escape route for pathogens that cause hospital infections, including urinary tract infections (UTI). Bacteria of the genera Escherichia and Klebsiella are common etiological factors of UTI, especially in children, and they can cause short-term infections, as well as chronic conditions. ESBL-producing Escherichia and Klebsiella have also emerged as potential indicators for estimating the burden of antimicrobial resistance under environmental conditions and the spread of AMR between clinical settings and the natural environment. In this study, whole-genome sequencing and the nanopore technology were used to analyze the complete genomes of ESBL-producing E.coli and Klebsiella spp. and the HWW metagenome, and to characterize the mechanisms of AMR. The similarities and differences in the encoded mechanisms of AMR in clinical isolates (causing UTI) and environmental strains (isolated from HWW and the HWW metagenome) were analyzed. Special attention was paid to the genetic context and the mobility of antibiotic resistance genes (ARGs) to determine the common sources and potential transmission of these genes. The results of this study suggest that the spread of drug resistance from healthcare facilities via HWW is not limited to the direct transmission of resistant clonal lines that are typically found in the clinical setting, but it also involves the indirect transfer of mobile elements carrying ARGs between bacteria colonizing various environments. Hospital wastewater could offer a supportive environment for plasmid evolution through the insertion of new ARGs, including typical chromosomal regions. These results indicate that interlined environments (hospital patients - HWW) should be closely monitored to evaluate the potential transmission routes of drug resistance in bacteria.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli , Hospitais , Klebsiella , Águas Residuárias , Águas Residuárias/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Klebsiella/genética , Klebsiella/isolamento & purificação , Humanos , Farmacorresistência Bacteriana/genética , Sequências Repetitivas Dispersas , Metagenômica , Genoma Bacteriano , Antibacterianos/farmacologia , Genômica
3.
Environ Sci Ecotechnol ; 21: 100388, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38351955

RESUMO

Antibiotic resistance is an escalating global health concern, exacerbated by the pervasive presence of antibiotic resistance genes (ARGs) in natural environments. The Yangtze River, the world's third-longest river, traversing areas with intense human activities, presents a unique ecosystem for studying the impact of these genes on human health. Here, we explored ARGs in the Yangtze River, examining 204 samples from six distinct habitats of approximately 6000 km of the river, including free-living and particle-associated settings, surface and bottom sediments, and surface and bottom bank soils. Employing shotgun sequencing, we generated an average of 13.69 Gb reads per sample. Our findings revealed a significantly higher abundance and diversity of ARGs in water-borne bacteria compared to other habitats. A notable pattern of resistome coalescence was observed within similar habitat types. In addition, we developed a framework for ranking the risk of ARG and a corresponding method for calculating the risk index. Applying them, we identified water-borne bacteria as the highest contributors to health risks, and noted an increase in ARG risks in particle-associated bacteria correlating with heightened anthropogenic activities. Further analysis using a weighted ARG risk index pinpointed the Chengdu-Chongqing and Yangtze River Delta urban agglomerations as regions of elevated health risk. These insights provide a critical new perspective on ARG health risk assessment, highlighting the urgent need for strategies to mitigate the impact of ARGs on human health and to preserve the ecological and economic sustainability of the Yangtze River for future human use.

4.
Sci Total Environ ; 912: 169026, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056656

RESUMO

The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Humanos , Resíduos Sólidos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Inteligência Artificial , Meio Ambiente , Instalações de Eliminação de Resíduos
5.
Sensors (Basel) ; 23(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139659

RESUMO

In the era of miniaturization of electronic equipment and the need to connect sensors with textile materials, including clothing, the processing of signals received from the implemented sensors becomes an important issue. Information obtained by measuring the electrical properties of the sensors must be sent, processed, and visualized. For this purpose, the authors of this article have developed a prototype of a data collector obtained from textronic sensors created on composite textile substrates. The device operates in a system consisting of an electronic module based on the nRF52 platform, which supports wireless communication with sensors using Bluetooth technology and transmits the obtained data to a database hosted on the Microsoft Azure platform. A mobile application based on React Native technology was created to control the data stream. The application enables automatic connection to the selected collector, data download and their presentation in the form of selected charts. Initial verification tests of the system showed the correctness and reliability of its operation, and the presented graphs created from the obtained data indicate the usefulness of the device in applications where measurements and recording of impedance, resistance, and temperature are necessary. The presented prototype of a data collector can be used for resistance, impedance, and temperature measurements in the case of textronic structures but also in other wearable electronic systems.

6.
J Environ Manage ; 348: 119303, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832303

RESUMO

Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.


Assuntos
Antibacterianos , Solo , Animais , Solo/química , Antibacterianos/farmacologia , Esterco/microbiologia , Genes Bacterianos , Aves Domésticas/genética , Promoção da Saúde , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Criação de Animais Domésticos , Microbiologia do Solo
7.
J Environ Manage ; 347: 119053, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37748295

RESUMO

Environmentally-friendly management of landfill leachate (LL) poses a challenge, and LL is usually co-treated with municipal wastewater in wastewater treatment plants (WWTPs). The extent to which the co-treatment of LL and municipal wastewater influences the spread of antibiotic resistance (AR) in the environment has not been examined to date. Two WWTPs with similar wastewater composition and technology were studied. Landfill leachate was co-treated with wastewater in one of the studied WWTPs. Landfill leachate, untreated and treated wastewater from both WWTPs, and river water sampled upstream and downstream from the wastewater discharge point were analyzed. Physicochemical parameters, microbial diversity, and antibiotic resistance genes (ARGs) abundance were investigated to determine the impact of LL co-treatment on chemical and microbiological contamination in the environment. Landfill leachate increased pollutant concentrations in untreated wastewater and river water. Cotreatment of LL and wastewater could affect the abundance and diversity of microbial communities and the interactions between microbial species. Co-treatment also decreased the stability of microbial co-occurrence networks in the examined samples. The mexF gene was identified as a potential marker of environmental pollution with LL. This is the first study to explore the impact of LL on the occurrence of AR determinants in wastewater and rivers receiving effluents.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Genes Bacterianos , Resistência Microbiana a Medicamentos/genética , Antibacterianos/análise , Água
8.
J Hazard Mater ; 459: 132298, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37595469

RESUMO

The aim of the present study was to analyze changes in the microbiome, resistome, and mobilome of hospital wastewater (HWW) induced by disinfection with chlorine compounds. Changes in bacterial communities and specific antibiotic resistance genes (ARGs) in HWW were determined with the use of a nanopore long-read metagenomic approach. The main hosts of ARGs in HWW were identified, and the mobility of resistance mechanisms was analyzed. Special attention was paid to the prevalence of critical-priority pathogens in the HWW microbiome, which pose the greatest threat to human health. The results of this study indicate that chlorine disinfection of HWW can induce significant changes in the structure of the total bacterial population and antibiotic resistant bacteria (ARB) communities, and that it can modify the resistome and mobilome of HWW. Disinfection favored the selection of ARGs, decreased their prevalence in HWW, while increasing their diversity. The mobility of the HWW resistome increased after disinfection. Disinfection led to the emergence of new drug resistance mechanisms in previously sensitive bacterial taxa. In conclusion, this study demonstrated that HWW disinfected with low (sublethal) concentrations of free chlorine significantly contributes to the mobility and transfer of drug resistance mechanisms (including critical mechanisms) between bacteria (including pathogens).


Assuntos
Microbiota , Nanoporos , Humanos , Cloro/farmacologia , Águas Residuárias , Antagonistas de Receptores de Angiotensina , Desinfecção , Inibidores da Enzima Conversora de Angiotensina , Halogênios , Microbiota/genética , Cloretos , Antibacterianos , Hospitais
9.
Materials (Basel) ; 16(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37445172

RESUMO

In the era of developing wearable electronics, the miniaturization of electronic systems and their implementation in the textile industry is one of the key issues. For this reason, it is important to select the appropriate textile substrates upon which it is possible to produce electroconductive structures, as well as their selection from the point of view of the electrical parameters' stability. For this purpose, research related to the effect of heating a substrate on the resistance of the structures produced in the process of physical vacuum planting was conducted. Textile composites with a buffer layer made of polyurethane, Teflon, and acrylic were used as substrates in the tests. Such layers are an integral part of textile composites and a necessary element for producing structures with continuous electrical conductivity. The conducted tests showed that a buffer layer made of polyurethane (thermal conductivity, e.g., PERMACOL 5450 resin 0.16 W/mK) heated to 15 °C above room temperature was a layer that introduced changes into the surface resistance of the structures. The resistance values of the samples produced on a substrate containing a buffer layer of polyurethane varied in the range of 9-23%, depending on the manufacturer of the composite in the case of a self-heating mode, and in the case of an external heating mode, these changes were smaller and ranged from 8 to 16%. Such a phenomenon occurred regardless of the type of applied metal, and this was not observed in the case of composites with a Teflon or acrylic sublayer. For this reason, it is necessary to take into account the fact that textronic structures made on substrates containing a polyurethane layer may change the surface resistance depending on the temperature. The electrical parameters of such structures were checked by heating the structure using an external heater and self-heating mechanism. The same phenomenon was observed in both cases.

10.
Sensors (Basel) ; 23(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36772529

RESUMO

One of the critical parameters of thin-film electrically conductive structures in wearable electronics systems is their conductivity. In the process of using such structures, especially during bending, defects and microcracks appear that affect their electrical parameters. Understanding these phenomena in the case of thin layers made on flexible substrates, including textile ones, which are incorporated in sensors that monitor vital functions, is a key aspect when applying such solutions. Cracks and defects in such structures appearing during their use may be critical for the correct operation of such systems. In this study, the influence of defects resulting from the repeated bending of the conductive layer on its conductivity is analyzed. The anisotropic and partly stochastic characteristics of the defects are also taken into account. The defects are modeled in the form of broken lines, whose segments are generated in successive iterative steps, thus simulating the gradual wear of the layer material. The lengths and inclinations of these sections are determined randomly, which makes it possible to consider the irregularity of real defects of this type. It was found that near the percolation threshold, defects with a more irregular shape have a dominant effect on the reduction of conductivity due to the greater probability of their connection. The simulation results were compared with the experimental data. It was found that the dependence of the conductivity of the conductive layer on the number of bends is logarithmic. This allowed for the derivation of a formula linking the iteration number of the simulation procedure with the number of bends. Improving the strength of such layers is a technological challenge for researchers.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36768038

RESUMO

Antimicrobials and antibiotic resistance genes (ARGs) in substrates processed during anaerobic digestion in agricultural biogas plants (BPs) can reach the digestate (D), which is used as fertilizer. Antimicrobials and ARGs can be transferred to agricultural land, which increases their concentrations in the environment. The concentrations of 13 antibiotics in digestate samples from biogas plants (BPs) were investigated in this study. The abundance of ARGs encoding resistance to beta-lactams, tetracyclines, sulfonamides, fluoroquinolones, macrolide-lincosamide-streptogramin antibiotics, and the integrase genes were determined in the analyzed samples. The presence of cadmium, lead, nickel, chromium, zinc, and mercury was also examined. Antimicrobials were not eliminated during anaerobic digestion. Their concentrations differed in digestates obtained from different substrates and in liquid and solid fractions (ranging from 62.8 ng/g clarithromycin in the solid fraction of sewage sludge digestate to 1555.9 ng/L doxycycline in the liquid fraction of cattle manure digestate). Digestates obtained from plant-based substrates were characterized by high concentrations of ARGs (ranging from 5.73 × 102 copies/gDcfxA to 2.98 × 109 copies/gDsul1). The samples also contained mercury (0.5 mg/kg dry mass (dm)) and zinc (830 mg/kg dm). The results confirmed that digestate is a reservoir of ARGs (5.73 × 102 to 8.89 × 1010 copies/gD) and heavy metals (HMs). In addition, high concentrations of integrase genes (105 to 107 copies/gD) in the samples indicate that mobile genetic elements may be involved in the spread of antibiotic resistance. The study suggested that the risk of soil contamination with antibiotics, HMs, and ARGs is high in farms where digestate is used as fertilizer.


Assuntos
Mercúrio , Metais Pesados , Animais , Bovinos , Antibacterianos/farmacologia , Biocombustíveis , Fertilizantes , Zinco , Esgotos/química , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco
12.
Sci Rep ; 13(1): 673, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635461

RESUMO

Reducing electricity consumption is currently one of the most significant global issues. Luminaires and light sources are characterised by relatively low rated power values. However, due to their high number, they account for a noticeable share of the total volume of electricity consumption. When the LED lamp/luminaire is switched-on, it emits a higher luminous flux and receives more power from the mains supply than when the thermal conditions have stabilized. This phenomenon is called short-term luminous flux depreciation. The lighting design process on photometric data obtained for steady-state operating conditions is based, on once the luminous flux has stabilized. Therefore, it is possible to design the control algorithm of the LED luminaire in such a way as to reduce this phenomenon, which will result in measurable savings of electrical energy. The paper proposes the use of a method to identify the short-term luminous flux depreciation of LED luminaires. The model was then used to simulate the operation of a control algorithm limiting the phenomenon of short-term luminous flux depreciation.

13.
Educ Inf Technol (Dordr) ; 28(6): 6423-6451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36415781

RESUMO

The authors decided to investigate the impact of the pandemic period and the resulting limitations in Polish primary school online security education. The first part of the study investigates the impact of the COVID-19 pandemic on students' educational learning outcomes in information and Internet security. The study has been performed via a student-oriented survey of 20 questions. The statistical analysis confirms the significant difference before and after the pandemic in several questions at most. Nevertheless, this justifies the statement that pandemics had a positive impact on post-pandemic Internet-related security education. The second part of the study has been focused on students' perception and self-awareness of cyberspace problems. For this purpose, the authors used novel majority-based decision fusion clustering validation methods. The revealed results illustrate the positive tendency toward the students' self-awareness and self-confidence of online security problems and e-threats before, during and after the challenging pandemic period. Moreover, the presented validation methods show the appealing performance in educational data analysis, and therefore, the authors recommended these methods as a preprocessing step that helps to explore the intrinsic data structures or students' behaviors and as a postprocessing step to predict learning outcomes in different educational environments.

14.
Environ Sci Pollut Res Int ; 30(5): 11572-11583, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36094711

RESUMO

Escherichia coli bacteria are an essential indicator in evaluations of environmental pollution, which is why they must be correctly identified. This study aimed to determine the applicability of various methods for identifying E. coli strains in environmental samples. Bacterial strains preliminary selected on mFc and Chromocult media as E. coli were identified using MALDI Biotyper techniques, based on the presence of genes characteristic of E. coli (uidA, uspA, yaiO), as well as by 16S rRNA gene sequencing. The virulence and antibiotic resistance genes pattern of bacterial strains were also analyzed to investigate the prevalence of factors that may indicate adaptation to unsupportive environmental conditions and could have any significance in further identification of E. coli. Of the strains that had been initially identified as E. coli with culture-based methods, 36-81% were classified as E. coli with the use of selected techniques. The value of Cohen's kappa revealed the highest degree of agreement between the results of 16S rRNA gene sequencing, the results obtained in the MALDI Biotyper system, and the results of the analysis based on the presence of the yaiO gene. The results of this study could help in the selection of more accurate and reliable methods which can be used in a preliminary screening and more precise identification of E. coli isolated from environmental samples.


Assuntos
Bactérias , Escherichia coli , RNA Ribossômico 16S/genética , Bactérias/genética , Virulência
15.
Sci Rep ; 12(1): 18341, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316394

RESUMO

This paper describes a new method of textile pilling prediction, based on multivariate analysis of the spatial layer above the surface. The original idea of the method is the acquisition of 3D fabric image using optical coherence tomography (OCT) with infrared light, which allows for the fabric fuzz visualization with high sensitivity. The pilling layer, reconstructed with the resolution of [Formula: see text], includes reliable textural information related to the amount of loose fibers and bunches appearing as a result of abrasion. Pilling intensity was assigned by supervised classification of the textural features using both linear (PLS-DA - partial least squares discriminant analysis, LDA - linear discriminant analysis) and non-linear (SVM - support vector machine) classifiers. The results demonstrated that the method is more suitable for fabrics after short-term abrasion, when the fuzz prevails over tangled fibers in the pilling layer. In that case, pilling grades were predicted with [Formula: see text] accuracy, sensitivity and specificity (for SVM model). The validation accuracy of the tested models after machine abrasion achieves lower values (up to [Formula: see text] for LDA model). With our method, we clearly showed that OCT can be used to quantitatively trace appearance changes of fabric samples due to test abrasion.


Assuntos
Máquina de Vetores de Suporte , Tomografia de Coerência Óptica , Análise dos Mínimos Quadrados , Análise Discriminante , Têxteis
16.
Artigo em Inglês | MEDLINE | ID: mdl-36360746

RESUMO

Hospitals are regarded as ecological niches of antibiotic-resistant bacteria (ARB). ARB can spread outside the hospital environment via hospital wastewater (HWW). Therefore, HWW is often disinfected in local stations to minimize that risk. Chlorine-based treatment is the most popular method of HWW disinfection around the world, however, recent research has suggested that it can contribute to the spread of antimicrobial resistance (AMR). The aim of this study is to determine the impact of HWW disinfection on the clonal similarity of Enterobacteriaceae species and their ability to produce extended-spectrum beta-lactamases (ESBLs). The study was conducted in a hospital with a local chlorine-based disinfection station. Samples of wastewater before disinfection and samples of disinfected wastewater, collected in four research seasons, were analyzed. Bacteria potentially belonging to the Enterobacteriaceae family were isolated from HWW. The Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) method was used to generate DNA fingerprints of all bacterial isolates. The isolates were phenotypically tested for the production of ESBLs. Antibiotic resistance genes (blaSHV, blaTEM, and blaOXA, blaCTX-M-1-group, blaCTX-M-2-group, blaCTX-9-group and blaCTX-M-8/25-group) were detected by PCR in strains with confirmed phenotypic ability to produce ESBLs. The ESBL+ isolates were identified by the sequencing of 16S rDNA. In the present study, the same bacterial clones were isolated from HWW before and after disinfection and HWW was sampled in different seasons. Genetic and phenotypic variations were observed in bacterial clones. ESBL+ strains were isolated significantly more often from disinfected than from non-disinfected HWW. The blaOXA gene was significantly more prevalent in isolates from disinfected than non-disinfected HWW. Enterobacter hormaechei and Klebsiella pneumoniae were the dominant species in ESBL+ strains isolated from both sampling sites. The results of this study indicate that chlorine-based disinfection promotes the survival of ESBL-producing bacteria and/or the transmission of genetic determinants of antimicrobial resistance. As a result, chlorination increases the proportion of ESBL-producing Enterobacteriaceae in disinfected wastewater. Consequently, chlorine-based disinfection practices may pose a risk to the environment and public health by accelerating the spread of antimicrobial resistance.


Assuntos
Cloro , Águas Residuárias , Águas Residuárias/microbiologia , Cloro/farmacologia , Desinfecção , Antagonistas de Receptores de Angiotensina , Antibacterianos , Inibidores da Enzima Conversora de Angiotensina , beta-Lactamases/genética , Enterobacteriaceae/genética , Hospitais , Testes de Sensibilidade Microbiana
17.
Artigo em Inglês | MEDLINE | ID: mdl-36232152

RESUMO

Over the past few decades, due to the excessive consumption of drugs in human and veterinary medicine, the antimicrobial resistance (AR) of microorganisms has risen considerably across the world, and this trend is predicted to intensify. Many worrying research results indicate the occurrence of pools of AR, both directly related to human activity and environmental factors. The increase of AR in the natural environment is mainly associated with the anthropogenic activity. The dissemination of AR is significantly stimulated by the operation of municipal facilities, such as wastewater treatment plants (WWTPs) or landfills, as well as biogas plants, agriculture and farming practices, including animal production and land application of manure. These activities entail a risk to public health by spreading bacteria resistant to antimicrobial products (ARB) and antibiotic resistance genes (ARGs). Furthermore, subinhibitory concentrations of antimicrobial substances additionally predispose microbial consortia and resistomes to changes in particular environments that are permeated by these micropollutants. The current state of knowledge on the fate of ARGs, their dissemination and the complexity of the AR phenomenon in relation to anthropogenic activity is inadequate. This review summarizes the state-of-the-art knowledge on AR in the environment, in particular focusing on AR spread in an anthropogenically altered environment and related environmental consequences.


Assuntos
Antibacterianos , Esterco , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Efeitos Antropogênicos , Antibacterianos/farmacologia , Biocombustíveis , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Humanos , Águas Residuárias/microbiologia
18.
Sci Rep ; 12(1): 17529, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266434

RESUMO

Manure fertilization is the primary source of veterinary antimicrobials in the water-soil system. The research gap is the fate of antimicrobials after their release into the environment. This study aimed to provide a detailed and multi-faceted examination of fertilized cultivated fields using two types of manure (poultry and bovine) enriched with selected antimicrobials. The research focused on assessing the mobility and stability of antimicrobials in the water-soil system. Additionally, transformation products of antimicrobials in the environment were identified. The extraction (solid-phase extraction and/or solid-liquid extraction) and LC-MS/MS analysis procedures were developed to determine 14 antimicrobials in the soil and pore water samples. Ten out of fourteen antimicrobials were detected in manure-amended soil and pore water samples. The highest concentration in the soil was 109.1 ng g-1 (doxycycline), while in pore water, it was 186.6 ng L-1 (ciprofloxacin). Sixteen transformation products of antimicrobials were identified in the soil and soil-related pore water. The same transformation products were detected in both soil and soil pore water extracts, with significantly higher signal intensities observed in soil extracts than in water. Transformation products were formed in oxidation, carbonylation, and ring-opening reactions.


Assuntos
Anti-Infecciosos , Poluentes do Solo , Drogas Veterinárias , Bovinos , Animais , Esterco/análise , Solo , Cromatografia Líquida/métodos , Água/análise , Doxiciclina , Poluentes do Solo/análise , Monitoramento Ambiental , Antibacterianos/análise , Espectrometria de Massas em Tandem/métodos , Anti-Infecciosos/análise , Ciprofloxacina/análise
19.
Sensors (Basel) ; 22(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146138

RESUMO

Communication between people is a basic social skill used to exchange information. It is often used for self-express and to meet basic human needs, such as the need for closeness, belonging, and security. This process takes place at different levels, using different means, with specific effects. It generally means a two-way flow of information in the immediate area of contact with another person. When people are communicating using the same language, the flow of information is much easier compared to the situation when two people use two different languages from different language families. The process of social communication with the deaf is difficult as well. It is therefore essential to use modern technologies to facilitate communication with deaf and non-speaking people. This article presents the results of work on a prototype of a glove using textronic elements produced using a physical vacuum deposition process. The signal from the sensors, in the form of resistance changes, is read by the microcontroller, and then it is processed and displayed on a smartphone screen in the form of single letters. During the experiment, 520 letters were signed by each author. The correctness of interpreting the signs was 86.5%. Each letter was recognized within approximately 3 s. One of the main results of the article was also the selection of an appropriate material (Velostat, membrane) that can be used as a sensor for the proposed application solution. The proposed solution can enable communication with the deaf using the finger alphabet, which can be used to spell single words or the most important key words.


Assuntos
Língua de Sinais , Tradução , Comunicação , Humanos , Polônia
20.
Biomolecules ; 12(8)2022 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-36009054

RESUMO

The aim of this study was to quantify ESKAPEE bacteria, genes encoding resistance to antibiotics targeting this group of pathogens, as well as integrase genes in municipal wastewater and river water. Environmental DNA was extracted from the collected samples and used in deep sequencing with the Illumina TruSeq kit. The abundance of bacterial genera and species belonging to the ESKAPEE group, 400 ARGs associated with this microbial group, and three classes of integrase genes were determined. A taxonomic analysis revealed that Acinetobacter was the dominant bacterial genus, whereas Acinetobacter baumannii and Escherichia coli were the dominant bacterial species. The analyzed samples were characterized by the highest concentrations of the following ARGs: blaGES, blaOXA-58, blaTEM, qnrB, and qnrS. Acinetobacter baumannii, E. coli, and genes encoding resistance to ß-lactams (blaVEB-1, blaIMP-1, blaGES, blaOXA-58, blaCTX-M, and blaTEM) and fluoroquinolones (qnrS) were detected in samples of river water collected downstream from the wastewater discharge point. The correlation analysis revealed a strong relationship between A. baumannii (bacterial species regarded as an emerging human pathogen) and genes encoding resistance to all tested groups of antimicrobials. The transmission of the studied bacteria (in particular A. baumannii) and ARGs to the aquatic environment poses a public health risk.


Assuntos
Acinetobacter baumannii , Águas Residuárias , Acinetobacter baumannii/genética , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Escherichia coli , Humanos , Integrases , Polônia , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA