Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 44(31): 2414-2423, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37615205

RESUMO

Time-dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+ ). An organic dication, MV2+ has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+ is easily reduced by a single electron transfer to form a radical cation species (MV•+ ), which has an intense UV-visible absorption near 600 nm. The redox properties of the MV2+ /MV•+ couple and light-sensitivity of MV•+ have made the system appealing for photo-electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo-induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+ and MV•+ . Using a conventional hybrid exchange functional (B3-LYP) and a long-range corrected hybrid exchange functional (ωB97X-D3), including with a conductor-like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions.

2.
ACS Meas Sci Au ; 3(2): 127-133, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37090254

RESUMO

A spectroelectrochemical cell is described that enables confocal Raman microscopy studies of electrode-supported films. The confocal probe volume (∼1 µm3) was treated as a fixed-volume reservoir for the observation of potential-induced changes in chemical composition at microscopic locations within an ∼20 µm thickness layer of a redox polymer cast onto a 3 mm diameter carbon disk electrode. Using a Raman system with high collection efficiency and wavelength reproducibility, spectral subtraction achieved excellent rejection of background interferences, opening opportunities for measuring within micrometer-scale thickness redox films on widely available, low-cost, and conventional carbon disk electrodes. The cell performance and spectral difference technique are demonstrated in experiments that detect transformations of redox-active molecules exchanged into electrode-supported ionomer membranes. The in situ measurements were sensitive to changes in the film oxidation state and swelling/deswelling of the polymer framework in response to the uptake and discharge of charge-compensating electrolyte ions. The studies lay a foundation for confocal Raman microscopy as a quantitative in situ probe of processes within electrode-immobilized redox polymers under development for a range of applications, including electrosynthesis, energy conversion, and chemical sensing.

3.
Appl Spectrosc ; 75(4): 376-384, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32700554

RESUMO

Infrared and Raman spectroscopy techniques were applied to investigate the drying and aggregation behavior of Nafion ionomer particles dispersed in aqueous solution. Gravimetric measurements aided the identification of gel-phase development within a series of time-resolved spectra that tracked transformations of a dispersion sample during solvent evaporation. A spectral band characteristic of ionomer sidechain end group vibration provided a quantitative probe of the dispersion-to-gel change. For sets of attenuated total reflection Fourier transform infrared (ATR FT-IR) spectra, adherence to Beer's law was attributed to the relatively constant refractive index in the frequency region of hydrated -SO3- group vibrations as fluorocarbon-rich ionomer regions aggregate in forming the structural framework of membranes and thin films. Although vibrational bands associated with ionomer backbone CF2 stretching vibrations were affected by distortion characteristic of wavelength-dependent refractive index change within a sample, the onset of band distortion signaled gel formation and coincided with ionomer mass % values just below the critical gelation point for Nafion aqueous dispersions. Similar temporal behavior was observed in confocal Raman microscopy experiments that monitored the formation of a thin ionomer film from an individual dispersion droplet. For the ATR FT-IR spectroscopy and confocal Raman microscopy techniques, intensity in the water H-O-H bending vibrational band dropped sharply at the ionomer critical gelation point and displayed a time dependence consistent with changes in water content derived from gravimetric measurements. The reported studies lay groundwork for examining the impact of dispersing solvents and above-ambient temperatures on fluorinated ionomer transformations that influence structural properties of dispersion-cast membranes and thin films.

4.
J Phys Chem B ; 123(46): 9899-9911, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31647234

RESUMO

The microhydration effects on two polymer electrolyte membrane materials, Nafion and bis[(perfluoroalkyl)sulfonyl] imide (PFSI), were investigated by analyzing optimized geometries and normal modes of vibration. The calculations were performed on periodic structural models with systematic increases of the number of water molecules around the polar head groups. A strong effect of microhydration on the structure of the polar head groups was observed due to a large red shift of the SO-H (Nafion) and N-H (PFSI) stretching modes of about 600-1000 cm-1. In addition, frequency calculations showed how H2O stretching vibrations contribute to the overall high frequency vibrational spectra. Both asymmetric and symmetric stretching modes of the SO2 group (νas(SO2) and νs(SO2)) were red-shifted indicating the S-O bond weakening upon microhydration. PFSI models showed spectral changes upon microhydration comparable to those observed for Nafion. However, distinct spectral features related to the differences in the polar head groups were observed. Lower N-H stretching frequency compared to the SO-H mode explained a stronger acid character of the PFSI polar headgroup and its earlier proton transfer ability (less water molecules needed for the proton release).

5.
Anal Chem ; 91(1): 1049-1055, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30512927

RESUMO

Single layer graphene (SLG), with its angstrom-scale thickness and strong Raman scattering cross section, was adapted for measurement of the axial ( Z-direction) probe beam profile in confocal Raman microscopy depth-profiling experiments. SLG adsorbed to a glass microscope coverslip (SLG/SiO2) served as a platform for the estimation of axial spatial resolution. Profiles were measured by stepping the confocal probe volume through the SLG/SiO2 interface while measuring Raman scattering from the sample. Using a high numerical aperture (1.4 NA) oil immersion objective, axial profiles were derived from the graphene 2D vibrational mode and fit to a Lorentzian instrument response function (IRF). Subsequently, the Z-direction spatial resolution in depth-profiling studies of polymer interfaces was estimated through convolution of the Lorentzian IRF with a step function representing the ideal junction separating the phases of interest. In the study of a bipolar polymer membrane, confocal Raman depth profiles of the AEM/CEM (anion exchange membrane/cation exchange membrane) interface show that the transition region is broader than the limiting response and are consistent with roughness at the boundary on the order of a few micrometers. Using ClO4- as a Raman active mobile ion probe, application of self-modeling curve resolution (SMCR) to spectral data sets within a profile showed ClO4- ions track the spatial distribution of the AEM phase. Finally, in measurements on a liquid-solid interface formed between 1-octanol and a polydimethylsiloxane (PDMS) membrane, the IRF derived from fitting the experimental profile was slightly narrower than those obtained from profiling SLG, indicating the potential to use polymer-liquid interfaces formed from widely available materials and reagents for estimation of axial spatial resolution in confocal Raman depth-profiling.

6.
J Am Chem Soc ; 140(5): 1743-1752, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29350035

RESUMO

Ion current densities near 1 A cm-2 at modest bias voltages (<200 mV) are reported for proton and deuteron transmission across single-layer graphene in polyelectrolyte-membrane (PEM)-style hydrogen pump cells. The graphene is sandwiched between two Nafion membranes and covers the entire area between two platinum-carbon electrodes, such that proton transfer is forced to occur through the graphene layer. Raman spectroscopy confirms that buried graphene layers are single-layer and relatively free of defects following the hot-press procedure used to make the sandwich structures. Area-normalized ion conductance values of approximately 29 and 2.1 S cm-2 are obtained for proton and deuteron transport, respectively, through single-layer graphene, following correction for contributions to series resistance from Nafion resistance, contact resistance, etc. These ion conductance values are several hundred to several thousand times larger than in previous reports on similar phenomena. A ratio of proton to deuteron conductance of 14 to 1 is obtained, in good agreement with but slightly larger than those in prior reports on related cells. Potassium ion transfer rates were also measured and are attenuated by a factor of many thousands by graphene, whereas proton transfer is attenuated by graphene by only a small amount. Rates for hydrogen and deuterium ion exchange across graphene were analyzed using a model whereby each hexagonal graphene hollow site is assumed to transmit ions with a specific per-site ion-transfer self-exchange rate constant. Rate constant values of approximately 2500 s-1 for proton transfer and 180 s-1 for deuteron transfer per site through graphene are reported.

7.
Appl Spectrosc ; 72(1): 141-150, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28782369

RESUMO

An approach based on vibrational spectral measurements is described for determining the ionizable group content of ion conducting polymer membrane materials. Aimed at supporting the assessment of membrane stability and wear characteristics, performance is evaluated for attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, confocal Raman microscopy, and ATR FT-IR microscopy using perfluorinated ionomer membrane standards. One set of ionomer standards contained a sulfonic acid ionizable group and the other a sulfonyl imide group. The average number of backbone tetrafluoroethylene (TFE) units separating the ionizable-group containing side chains was in the range of 7.2-2.1 (sulfonic acid set) and 10.5-4.6 (sulfonyl imide set). A poly(tetrafluoroethylene) (PTFE) sample was included as a blank, representing the limit of zero ionizable group (and maximum TFE) content. Calibration relationships were derived from area-normalized vibrational spectra. For all three methods, calibration models applied to independent spectral measurements of samples predicted the ratio of backbone TFE groups to ionizable groups in the repeat unit ( m) with a standard error of ≤ ±0.3. The confocal Raman and ATR FT-IR microscopy techniques achieved ideal blank responses and the lowest prediction errors, down to m ± 0.1 at the 90% confidence level. With its relative simplicity, low sample size requirements, and potential for quantitative micron-scale spatial mapping of the ionizable group content within a membrane, the approach has application to advancing materials development, including exploratory synthesis, durability and wear assessment, and in situ studies of membrane process.

8.
Anal Chem ; 89(24): 13290-13298, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29135232

RESUMO

The need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW) received in the proton-exchanged (SO3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA+: SO3- ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 and 500 cm-1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA+ modified Aquivion ionomers were able to reach maximum power densities (Pmax) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA+ modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW-1), where the greater density of SO3- moieties in the Aquivion materials produces an environment more favorable to mass transport and higher TBA+ concentrations.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Eletroquímicas , Lacase/análise , Compostos de Amônio Quaternário/análise , Biocatálise , Eletrodos , Íons/análise , Lacase/metabolismo , Microscopia Confocal , Compostos de Amônio Quaternário/metabolismo , Análise Espectral Raman
9.
ACS Appl Mater Interfaces ; 6(3): 1796-803, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24417220

RESUMO

The ability to direct the morphology of cobalt sol-gel materials by using the simple synthetic parameters in epoxide-driven polycondensations has been dramatically demonstrated, and the influence of such morphological differences upon the supercapacity of the materials has been explored. Precursor salt, epoxide, and solvent all influence the speed of the sol-gel transition and the size and shape of the features observed in the as-prepared materials, thereby leading to highly varied microstructures including spheres, sponge-like networks, and plate assemblies of varied size. These morphological features of the as-prepared cobalt aerogels were observed for the first time by high resolution scanning electron microscopy (HRSEM). The as-prepared aerogel materials were identified by powder X-ray diffraction and thermogravimetry as weakly crystalline or amorphous cobalt basic salts with the general formula Co(OH)(2-n)X(n) where X = Cl or NO3 according to the precursor salt used in the synthesis. For all samples, the morphology was preserved through mild calcining to afford spinel phase Co3O4 in a variety of microstructures. Wide-ranging specific surface areas were determined for the as-prepared and calcined phases by physisorption analysis in agreement with the morphologies observed by HRSEM. The Co3O4 aerogels were evaluated for their supercapacitive performance by cyclic voltammetry. The various specimens exhibit capacitances ranging from 110 to 550 F g(-1) depending upon the attributes of the particular aerogel material, and the best specimen was found to have good cycle stability. These results highlight the epoxide-driven sol-gel condensation as a versatile preparative route that provides wide scope in materials' properties and enables the analysis of structure-performance relationships in metal oxide materials.

10.
Langmuir ; 29(45): 13890-7, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24111660

RESUMO

Structures for interfacial water condensed in pores and channels of the fluorinated ionomer Nafion from low relative humidity atmosphere were probed through the use of Fourier transform infrared (FTIR) spectroscopy and support from classical and quantum chemical calculations. Modern FTIR spectra of H2O and the O-H stretching region for the deuterium-substituted HOD species interacting at the water-ionomer interface in Nafion exchanged by sodium cations are reported and compared to characteristics observed in the earlier studies that employed a dispersive infrared spectrometer and unspecified spectral resolution. Molecular simulations that examine the orientations of water molecules in the vicinity of ionomer were applied to understand the appearance of multiple free O-H stretching bands and the effect of HOD addition. One computational approach was based on a classical force field model, and the other employed density functional theory (DFT) to investigate atomic-scale interactions of water with regions of different hydrophobicity and charge on a perfluorosulfonate ionomer segment. The results suggest hydrogen bonding stabilizes the types of water-ionomer environments that can lead to multiple free O-H stretching vibrational features in experimental spectra. The studies shed light on the structure of H2O at interfaces inside ion conducting membrane materials and have potential for application in elucidating structure at different types of water interfaces.

11.
Anal Chem ; 84(19): 8127-32, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22947127

RESUMO

A high temperature solution processing method was adapted to prepare durable, freestanding, submicrometer thickness films for transmission infrared spectroscopy studies of ionomer membrane. The materials retain structural integrity following cleaning and ion-exchange steps in boiling solutions, similar to a commercial fuel cell membrane. Unlike commercial membrane, which typically has thicknesses of >25 µm, the structural properties of the submicrometer thickness materials can be probed in mid-infrared spectral measurements with the use of transmission sampling. Relative to the infrared attenuated total reflection (ATR) technique, transmission measurements can sample ionomer membrane materials more uniformly and suffer less distortion from optical effects. Spectra are reported for thermally processed Nafion and related perfluoroalkyl ionomer materials containing phosphonate and phosphinate moieties substituted for the sulfonate end group on the side chain. Band assignments for complex or unexpected features are aided by density functional theory (DFT) calculations.


Assuntos
Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Temperatura , Ácidos Alcanossulfônicos/síntese química , Fluorocarbonos/síntese química , Teoria Quântica , Espectrofotometria Infravermelho
12.
ACS Appl Mater Interfaces ; 4(8): 3944-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22779922

RESUMO

We demonstrate that uniform dispersion of TiO(2) on graphene is critical for the photocatalytic effect of the composite. The hydrothermal method was employed to synthesize TiO(2) nanowires (NW) and then fabricate graphene-TiO(2) nanowire nanocomposite (GNW). Graphene oxide (GO) reduction to graphene and hybridization between TiO(2) NWs and graphene by forming chemical bonding was achieved in a one-step hydrothermal process. Graphene-TiO(2) nanoparticle (NP) nanocomposite (GNP) was also synthesized. Photocatalytic performance and related properties of NP, NW, GNP, and GNW were comparatively studied. It was found that by incorporation of graphene, GNP and GNW have higher performance than their counterparts. More importantly, it was found that NWs, in comparison with NPs, have more uniform dispersion on graphene with less agglomeration, resulting in more direct contact between TiO(2) and graphene, and hence further improved electron-hole pairs (EHPs) separation and transportation. The adsorbability of GNW is also found to be higher than GNP. The result reveals that the relative photocatalytic activity of GNW is much higher than GNP and pure NWs or NPs.

13.
J Phys Chem B ; 113(18): 6299-304, 2009 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-19402725

RESUMO

Structural properties of the proton-exchanged forms of bis[(perfluoroalkyl)sulfonyl] imide (PFSI) ionomer materials were investigated. The hydration and dehydration of samples prepared as thin films and freestanding membrane were probed by applying transmission infrared spectroscopy. Spectral bands were assigned and effects of water incorporation into membrane pores and channels were understood by drawing upon results from related measurements performed on the structurally similar, perfluorosulfonic acid ionomer, Nafion. Both PFSI and Nafion membrane materials display a prominent infrared absorbance band near 1060 cm(-1) that arises from a vibrational mode of the ionizable group present on the side chains that extend from the poly(tetrafluoroethylene) backbone on the polymers. The mode can be traced to symmetric stretching of the -SO(3)(-) (sulfonate) group in Nafion and to antisymmetric S-N-S stretching within the sulfonyl imide end group (-SO(2)(N(-))SO(2)CF(3)) in the PFSI materials. For Nafion samples, the position and width of the band near 1060 cm(-1) are strongly sensitive to membrane hydration, whereas the band position and shape change only slightly during hydration and dehydration of PFSI materials. The possibility for greater charge delocalization over the sulfonyl imide moiety and shielding of hydrophilic species by the terminal -CF(3) group are suggested to explain the differences. These effects also likely influence the stretching modes of the side chain C-O-C groups. A pair of bands, sensitive to hydration and traceable to different C-O-C groups in a side chain, is present in the 970-990 cm(-1) region of Nafion. However, the two features are not well resolved and are less sensitive to hydration in spectra of PFSI samples. The most intense ionomer spectral bands arise from modes involving C-F stretching motion and appear between 1150 and 1250 cm(-1). Toward the high energy side of the envelope, there is substantial overlap with features of sulfonate group antisymmetric SO stretching modes in Nafion, but SO stretching modes of the sulfonyl imide moiety are higher in energy and better resolved in spectra of the PFSIs. During water uptake from a dry state into PFSI materials, a progression of features characteristic of solvated H(3)O(+) species appears across the water O-H stretching (2800-3800 cm(-1)) and H-O-H bending (1500-2000 cm(-1)) regions, similar to responses observed for water inside proton-exchanged Nafion.

14.
Phys Chem Chem Phys ; 10(42): 6430-7, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18972031

RESUMO

Sonochemically prepared PtRu (3 : 1) and Johnson Matthey PtRu (1 : 1) were analyzed by X-ray absorption spectroscopy in operating liquid feed direct methanol fuel cells. The total metal loadings were 4 mg cm(-2) unsupported catalysts at the anode and cathode of the membrane electrode assembly. Ex situ XRD lattice parameter analysis indicates partial segregation of the Ru from the PtRu fcc alloy in both catalysts. A comparison of the in situ DMFC EXAFS to that of the as-received catalyst shows that catalyst restructuring during DMFC operation increases the total metal coordination numbers. A combined analysis of XRD determined grain sizes and lattice parameters, ex situ and in situ EXAFS analysis, and XRF of the as-received catalysts enables determination of the catalyst shell composition. The multi-spectrum analysis shows that the core size increases during DMFC operation by reduction of Pt oxides and incorporation of Pt into the core. This increases the mole fraction of Ru in the catalyst shell structure.

15.
Appl Spectrosc ; 62(6): 634-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18559150

RESUMO

Least squares modeling was applied to gain insights into changes that occur in the structure of Nafion polymer membrane during hydration. Transmission infrared spectra followed changes in the strong polymer bands in the range of 1400-950 cm(-1) during water uptake by initially dry membrane upon exposure to 100% relative humidity atmosphere. Spectra recorded during hydration were fit to a rate equation that modeled the loss of a dry state accompanied by the development of a hydrated state. The evolution of the two states was described by an equation for diffusion in a cylindrical pore in the long time limit. Comparison of the experimental spectra in a data set to spectra calculated from the pure components derived by least squares modeling gave an excellent match for bands of the -CF2 and C-O-C group modes, but agreement was not as close for bands arising from modes of the hydrophilic -SO3(-) group and (modeled separately) water. The differences are discussed in terms of the likelihood that the -SO3(-) groups have stronger interactions with bulk-like water condensed in the membrane and therefore undergo more complex changes than do more hydrophobic polymer regions during hydration. A different model is necessary to describe the evolution of spectral features for water and -SO3(-) end groups during water uptake into Nafion thin films.

16.
Phys Chem Chem Phys ; 10(25): 3655-61, 2008 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-18563226

RESUMO

Electrochemical measurements were performed to characterize the kinetics of adsorbed CO oxidation on the surface of the stepped Pt(s)-[4(111)x(100)][triple bond, length half m-dash]Pt(335) single crystal electrode. For CO adsorbed to full coverage at 0.1 V (versus the reversible hydrogen electrode, RHE) in 0.5 M H(2)SO(4) at ambient temperature (23 degrees C), oxidation of the layer gave 7.6 x 10(14) +/- 0.3 CO/cm(2) as the saturation CO coverage, just below the average value reported for CO on Pt(335) in ultra high vacuum (8.3 x 10(14) +/- 0.6 CO/cm(2)). In potential step measurements carried out between 0.75 and 0.9 V, the peak region in the current-time transient was consistent with the surface reaction between adsorbed CO and adsorbed oxide as rate limiting. Plotting the log of the rate constant for the surface reaction versus potential gave a Tafel slope of 79 mV per decade, consistent with responses for CO electrochemical oxidation on structurally related stepped Pt electrodes. For CO coverages below saturation, current-time transients were more stable in 0.05 M H(2)SO(4) than in the higher concentration electrolyte. Numerically solving the rate equations to the Langmuir-Hinshelwood model of adsorbed CO electrochemical oxidation reproduced the main features in current-time transients measured at 0.7 V in 0.05 M H(2)SO(4) for sub-saturation CO coverages. The results provide new insights into CO oxidation on Pt at sub-saturation coverage and confirm that anions play a role in CO surface chemistry.


Assuntos
Monóxido de Carbono/química , Platina/química , Adsorção , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Cinética , Modelos Químicos , Oxirredução , Ácidos Sulfúricos/química , Água/química
17.
Langmuir ; 22(25): 10446-50, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129014

RESUMO

Properties of PtRu nanoparticles prepared using high-intensity sonochemistry are reported. Syntheses were carried out in tetrahydrofuran (THF) containing Ru3+ and Pt4+ in a fixed mole ratio of either 1:10 or 1:1. X-ray diffraction measurements confirmed sonocation produces an alloy phase and showed that the composition of the nanometer scale metal particles is close to the mole fraction of Ru3+ and Pt4+ in solution with deviations that tend toward Ru enrichment in the alloy phase. The materials gave responses that are similar in terms of peak potential and current density, referenced to the catalyst active surface area, to those of bulk alloys in voltammetry experiments involving CO stripping and CH3OH electrochemical oxidation in 0.1 M H2SO4. The results show that sonochemical methods have the potential to produce nanometer scale bimetallic electrocatalysts that possess alloy properties. The materials have application in mechanistic studies of fuel cell reactions and as platforms for the development of CO tolerant fuel cell catalyst.

18.
J Phys Chem B ; 110(47): 23938-43, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125361

RESUMO

Infrared spectroscopy was applied to probe water inside pores and channels of Nafion membrane exchanged with either proton (H+) or sodium ions (Na+). Transmission measurements were performed on freestanding Nafion 112 (approximately 50 microm thickness) in a cell that enabled adjustment of the relative humidity. Experiments that employed Na+-exchanged Nafion focused on relative humidity environments at or below about 32% generated through the use of humectants. Under these conditions, narrow features in the O-H stretching spectral region near 3650-3720 cm(-1), previously attributed to interfacial water, were detected and matched to bands in vibrational sum frequency (VSF) spectra of water/air, water/organic, and salt-solution/air interfaces. The features correspond to the stretching mode of the "free" OH group of water oriented with one hydrogen atom toward other water molecules and interacting through hydrogen bonding and the other straddling the interface extending into fluorocarbon-rich regions (approximately 3668 cm(-1)) or air-filled segments (approximately 3700 cm(-1)) in the membrane. For membrane exchanged with H+, -SO3- groups were easily shifted to -SO3H as water was removed upon exposure to a few Torr of vacuum at 95 degrees C. In contrast, residual water was retained by membrane exchanged with Na+ after exposure to these conditions for up to 72 h. The permeation of methanol and acetone into Na+-exchanged Nafion 112 was also examined. The C-H and O-H stretching modes of methanol were perturbed in a manner that suggests the polymer disrupts hydrogen bonding interactions within the solvent, similar to the effect it exerts on pure water. For acetone, the C-H stretching modes were not shifted appreciably compared to those of the bulk liquid. However, the carbonyl band was affected, indicating the likely importance of dipolar interactions between solvent molecules and polar groups on the polymer. Control experiments performed with poly(hexafluoropropylene-co-tetrafluoroethylene) (FEP) membrane did not show evidence for water or methanol permeation, which demonstrates the critical role played by the ion-filled channels and pores in facilitating solvent transport within Nafion membrane.

19.
Appl Spectrosc ; 60(6): 599-604, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16808860

RESUMO

Transmission infrared spectroscopy was applied to investigate properties of the perfluorosulfonated polymer Nafion. Measurements were made on thin films formed by casting the polymer from solution onto ZnSe windows. Effects of water vapor permeation were studied. A complex band structure between 1350 and 1100 cm(-1) was analyzed qualitatively by fitting the region to Gaussian functions. Features associated with vibrational modes of -CF(2) and -SO(3)(-) groups were identified and observed to be sensitive to film hydration. The intensities of bands for the -SO(3)(-) modes increased with film hydration, while bands assignable to -CF(2) modes decreased. The results were applied to interpret infrared difference spectra of Nafion and shed light on the complicated features that appear. Vibrational bands for water were also examined. In partially hydrated films, the stretching mode of the free -OH group for interfacial water present in pores and channels of the polymer and bands for hydrated proton clusters were detected.


Assuntos
Polímeros de Fluorcarboneto/química , Membranas Artificiais , Refratometria/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Teste de Materiais/métodos
20.
Nano Lett ; 5(7): 1389-93, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16178244

RESUMO

The apparent proton conductivity inside a nanochannel can be enhanced by orders of magnitude due to the electric double layer overlap. A nanochannel filled with an acidic solution is thus a micro super proton conductor, and an array of such nanochannels forms an excellent proton conductive membrane. Taking advantage of this effect, a new class of proton exchange membrane is developed for micro fuel cell applications.


Assuntos
Fontes de Energia Elétrica , Eletroquímica/instrumentação , Microfluídica/instrumentação , Nanoestruturas/química , Prótons , Condutividade Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Microfluídica/métodos , Nanoestruturas/análise , Nanoestruturas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA