Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899855

RESUMO

Preterm birth is the leading cause of childhood mortality and morbidity. A better understanding of the processes that drive the onset of human labour is essential to reduce the adverse perinatal outcomes associated with dysfunctional labour. Beta-mimetics, which activate the myometrial cyclic adenosine monophosphate (cAMP) system, successfully delay preterm labour, suggesting a key role for cAMP in the control of myometrial contractility; however, the mechanisms underpinning this regulation are incompletely understood. Here we used genetically encoded cAMP reporters to investigate cAMP signalling in human myometrial smooth muscle cells at the subcellular level. We found significant differences in the dynamics of the cAMP response in the cytosol and at the plasmalemma upon stimulation with catecholamines or prostaglandins, indicating compartment-specific handling of cAMP signals. Our analysis uncovered significant disparities in the amplitude, kinetics, and regulation of cAMP signals in primary myometrial cells obtained from pregnant donors compared with a myometrial cell line and found marked response variability between donors. We also found that in vitro passaging of primary myometrial cells had a profound impact on cAMP signalling. Our findings highlight the importance of cell model choice and culture conditions when studying cAMP signalling in myometrial cells and we provide new insights into the spatial and temporal dynamics of cAMP in the human myometrium.


Assuntos
Miométrio , Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Miométrio/metabolismo , Nascimento Prematuro/metabolismo , AMP Cíclico/metabolismo , Linhagem Celular , Prostaglandinas/metabolismo
2.
Circ Res ; 132(7): 828-848, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36883446

RESUMO

BACKGROUND: Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac ß-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS: Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with ß-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS: We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS: We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.


Assuntos
AMP Cíclico , Miócitos Cardíacos , Humanos , Proteômica , Diester Fosfórico Hidrolases , Hipertrofia , Adrenérgicos
3.
Nat Cardiovasc Res ; 2: 1221-1245, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38500966

RESUMO

Propiogenic substrates and gut bacteria produce propionate, a post-translational protein modifier. In this study, we used a mouse model of propionic acidaemia (PA) to study how disturbances to propionate metabolism result in histone modifications and changes to gene expression that affect cardiac function. Plasma propionate surrogates were raised in PA mice, but female hearts manifested more profound changes in acyl-CoAs, histone propionylation and acetylation, and transcription. These resulted in moderate diastolic dysfunction with raised diastolic Ca2+, expanded end-systolic ventricular volume and reduced stroke volume. Propionate was traced to histone H3 propionylation and caused increased acetylation genome-wide, including at promoters of Pde9a and Mme, genes related to contractile dysfunction through downscaled cGMP signaling. The less severe phenotype in male hearts correlated with ß-alanine buildup. Raising ß-alanine in cultured myocytes treated with propionate reduced propionyl-CoA levels, indicating a mechanistic relationship. Thus, we linked perturbed propionate metabolism to epigenetic changes that impact cardiac function.

4.
Methods Mol Biol ; 2483: 141-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35286674

RESUMO

In the last years human induced pluripotent stem cell-derived cardiomyocytes (hIPS-CMs) have emerged as a promising alternative to rodent-derived cardiomyocytes. However, as the differentiation process is lengthy and commercially available cells are expensive, the cell number is limited. Here we provide detailed information on how to scale down 2D cell cultures of hIPS-CMs for the purpose of cAMP FRET measurements, thereby extending the number of possible experiments by more than tenfold. Crucial factors like cell density or cell number to culturing media volume can be maintained exactly as under normal culturing conditions and existing equipment does not need to be modified.The chapter covers the preparation of downscaled cell culture vessels, coating and seeding procedures, transduction or transfection of the cells with a genetically encoded cAMP FRET sensor, performing real-time cAMP FRET measurements with this sensor and the analysis of generated imaging data. Numbers for seeding areas, seeding densities, coating volumes and concentrations, media volumes, and concentrations of reagents are given as guidelines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Miócitos Cardíacos
5.
Cell ; 185(7): 1130-1142.e11, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35294858

RESUMO

G protein-coupled receptors (GPCRs) relay extracellular stimuli into specific cellular functions. Cells express many different GPCRs, but all these GPCRs signal to only a few second messengers such as cAMP. It is largely unknown how cells distinguish between signals triggered by different GPCRs to orchestrate their complex functions. Here, we demonstrate that individual GPCRs signal via receptor-associated independent cAMP nanodomains (RAINs) that constitute self-sufficient, independent cell signaling units. Low concentrations of glucagon-like peptide 1 (GLP-1) and isoproterenol exclusively generate highly localized cAMP pools around GLP-1- and ß2-adrenergic receptors, respectively, which are protected from cAMP originating from other receptors and cell compartments. Mapping local cAMP concentrations with engineered GPCR nanorulers reveals gradients over only tens of nanometers that define the size of individual RAINs. The coexistence of many such RAINs allows a single cell to operate thousands of independent cellular signals simultaneously, rather than function as a simple "on/off" switch.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Fenômenos Fisiológicos Celulares , AMP Cíclico , Peptídeo 1 Semelhante ao Glucagon , Receptores Adrenérgicos beta 2 , Receptores Acoplados a Proteínas G/química , Sistemas do Segundo Mensageiro
6.
Commun Biol ; 3(1): 596, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087821

RESUMO

Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Mitocôndrias/metabolismo , Mitofagia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Imunofluorescência , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Mitofagia/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
7.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992747

RESUMO

Duchenne muscular dystrophy (DMD) is the most frequent and severe form of muscular dystrophy. The disease presents with progressive body-wide muscle deterioration and, with recent advances in respiratory care, cardiac involvement is an important cause of morbidity and mortality. DMD is caused by mutations in the dystrophin gene resulting in the absence of dystrophin and, consequently, disturbance of other proteins that form the dystrophin-associated protein complex (DAPC), including neuronal nitric oxide synthase (nNOS). The molecular mechanisms that link the absence of dystrophin with the alteration of cardiac function remain poorly understood but disruption of NO-cGMP signalling, mishandling of calcium and mitochondrial disturbances have been hypothesized to play a role. cGMP and cAMP are second messengers that are key in the regulation of cardiac myocyte function and disruption of cyclic nucleotide signalling leads to cardiomyopathy. cGMP and cAMP signals are compartmentalised and local regulation relies on the activity of phosphodiesterases (PDEs). Here, using genetically encoded FRET reporters targeted to distinct subcellular compartments of neonatal cardiac myocytes from the DMD mouse model mdx, we investigate whether lack of dystrophin disrupts local cyclic nucleotide signalling, thus potentially providing an early trigger for the development of cardiomyopathy. Our data show a significant alteration of both basal and stimulated cyclic nucleotide levels in all compartments investigated, as well as a complex reorganization of local PDE activities.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Miócitos Cardíacos/metabolismo , Sistemas do Segundo Mensageiro , Animais , AMP Cíclico/genética , GMP Cíclico/genética , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Miócitos Cardíacos/patologia
8.
Sci Rep ; 10(1): 209, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937807

RESUMO

The sarcomeric troponin-tropomyosin complex is a critical mediator of excitation-contraction coupling, sarcomeric stability and force generation. We previously reported that induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from patients with a dilated cardiomyopathy (DCM) mutation, troponin T (TnT)-R173W, display sarcomere protein misalignment and impaired contractility. Yet it is not known how TnT mutation causes dysfunction of sarcomere microdomains and how these events contribute to misalignment of sarcomeric proteins in presence of DCM TnT-R173W. Using a human iPSC-CM model combined with CRISPR/Cas9-engineered isogenic controls, we uncovered that TnT-R173W destabilizes molecular interactions of troponin with tropomyosin, and limits binding of PKA to local sarcomere microdomains. This attenuates troponin phosphorylation and dysregulates local sarcomeric microdomains in DCM iPSC-CMs. Disrupted microdomain signaling impairs MYH7-mediated, AMPK-dependent sarcomere-cytoskeleton filament interactions and plasma membrane attachment. Small molecule-based activation of AMPK can restore TnT microdomain interactions, and partially recovers sarcomere protein misalignment as well as impaired contractility in DCM TnT-R173W iPSC-CMs. Our findings suggest a novel therapeutic direction targeting sarcomere- cytoskeleton interactions to induce sarcomere re-organization and contractile recovery in DCM.


Assuntos
Cardiomiopatia Dilatada/patologia , Diferenciação Celular , Citoesqueleto/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Miócitos Cardíacos/patologia , Sarcômeros/patologia , Troponina/química , Cálcio/metabolismo , Cardiomiopatia Dilatada/metabolismo , Acoplamento Excitação-Contração , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Troponina/metabolismo
9.
Methods Mol Biol ; 1947: 217-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969419

RESUMO

A variety of FRET-based biosensors are currently in use for real-time monitoring of dynamic changes of intracellular cAMP. Due to differences in sensor properties, unique features of the cell type under examination and diverse specifications of the imaging setups in different laboratories, data generated using these sensors may not be immediately comparable within the same study or across studies. To facilitate comparison, often FRET data are normalized and expressed as fractional change of the maximal FRET response at sensor saturation. However, this approach may lead to misinterpretation of the underlying cAMP change. In this chapter, we provide examples of the problems that may arise when using normalized FRET data and present a method based on the conversion of FRET ratio changes into actual cAMP concentrations that mitigates these issues.


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Humanos , Transdução de Sinais
10.
Life Sci ; 192: 144-150, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183797

RESUMO

AIMS: Ca2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca2+ currents and proliferation in pituitary tumor GH3 cells. MAIN METHODS: Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. KEY FINDINGS: Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. SIGNIFICANCE: We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca2+ current density and this phenomenon impacts proliferation rate in GH3 cells.


Assuntos
Canais de Cálcio/metabolismo , AMP Cíclico/metabolismo , Animais , Bucladesina/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo T/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colforsina/farmacologia , Mibefradil/farmacologia , Técnicas de Patch-Clamp , Neoplasias Hipofisárias/metabolismo , Ratos , Vasodilatadores/farmacologia
11.
Sci Rep ; 7(1): 14090, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074866

RESUMO

cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 µM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/administração & dosagem , AMP Cíclico/metabolismo , Animais , Western Blotting , Células CHO , Técnicas de Cultura de Células , Fenômenos Fisiológicos Celulares , Cricetulus , Citosol/efeitos dos fármacos , Citosol/metabolismo , Relação Dose-Resposta a Droga , Transferência Ressonante de Energia de Fluorescência , Microinjeções , Técnicas de Patch-Clamp
12.
Nat Commun ; 8: 15031, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425435

RESUMO

Compartmentalized cAMP/PKA signalling is now recognized as important for physiology and pathophysiology, yet a detailed understanding of the properties, regulation and function of local cAMP/PKA signals is lacking. Here we present a fluorescence resonance energy transfer (FRET)-based sensor, CUTie, which detects compartmentalized cAMP with unprecedented accuracy. CUTie, targeted to specific multiprotein complexes at discrete plasmalemmal, sarcoplasmic reticular and myofilament sites, reveals differential kinetics and amplitudes of localized cAMP signals. This nanoscopic heterogeneity of cAMP signals is necessary to optimize cardiac contractility upon adrenergic activation. At low adrenergic levels, and those mimicking heart failure, differential local cAMP responses are exacerbated, with near abolition of cAMP signalling at certain locations. This work provides tools and fundamental mechanistic insights into subcellular adrenergic signalling in normal and pathological cardiac function.


Assuntos
Técnicas Biossensoriais/métodos , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Isoproterenol/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Homologia de Sequência de Aminoácidos
13.
PLoS Comput Biol ; 12(2): e1004735, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26901880

RESUMO

Norepinephrine, a neuromodulator that activates ß-adrenergic receptors (ßARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both ßARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between ßAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the ßAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of ßAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of ßARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by ß-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.


Assuntos
AMP Cíclico/metabolismo , Hipocampo/citologia , N-Metilaspartato/metabolismo , Neurônios/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Cálcio/metabolismo , Biologia Computacional , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Transferência Ressonante de Energia de Fluorescência , Hipocampo/química , Hipocampo/metabolismo , Isoproterenol , Imagem Molecular , Ratos , Ratos Sprague-Dawley
14.
Cell Signal ; 28(7): 725-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26475678

RESUMO

In the heart compartmentalisation of cAMP/protein kinase A (PKA) signalling is necessary to achieve a specific functional outcome in response to different hormonal stimuli. Chronic exposure to catecholamines is known to be detrimental to the heart and disrupted compartmentalisation of cAMP signalling has been associated to heart disease. However, in most cases it remains unclear whether altered local cAMP signalling is an adaptive response, a consequence of the disease or whether it contributes to the pathogenetic process. We have previously demonstrated that isoforms of PKA expressed in cardiac myocytes, PKA-I and PKA-II, localise to different subcellular compartments and are selectively activated by spatially confined pools of cAMP, resulting in phosphorylation of distinct downstream targets. Here we investigate cAMP signalling in an in vitro model of hypertrophy in primary adult rat ventricular myocytes. By using a real time imaging approach and targeted reporters we find that that sustained exposure to catecholamines can directly affect cAMP/PKA compartmentalisation. This appears to involve a complex mechanism including both changes in the subcellular localisation of individual phosphodiesterase (PDE) isoforms as well as the relocalisation of PKA isoforms. As a result, the preferential coupling of PKA subsets with different PDEs is altered resulting in a significant difference in the level of cAMP the kinase is exposed to, with potential impact on phosphorylation of downstream targets.


Assuntos
Catecolaminas/farmacologia , Compartimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ventrículos do Coração/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Sítios de Ligação , Cardiomegalia/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Norepinefrina/farmacologia , Ratos Wistar
15.
Biochim Biophys Acta ; 1853(7): 1749-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25913012

RESUMO

Recent studies have demonstrated that the actin binding protein, ezrin, and the cAMP-sensor, EPAC1, cooperate to induce cell spreading in response to elevations in intracellular cAMP. To investigate the mechanisms underlying these effects we generated a model of EPAC1-dependent cell spreading based on the stable transfection of EPAC1 into HEK293T (HEK293T-EPAC1) cells. We found that direct activation of EPAC1 with the EPAC-selective analogue, 8-pCPT-2'-O-Me-cAMP (007), promoted cell spreading in these cells. In addition, co-activation of EPAC1 and PKA, with a combination of the adenylate cyclase activator, forskolin, and the cAMP phosphodiesterase inhibitor, rolipram, was found to synergistically enhance cell spreading, in association with cortical actin bundling and mobilisation of ezrin to the plasma membrane. PKA activation was also associated with phosphorylation of ezrin on Thr567, as detected by an electrophoretic band mobility shift during SDS-PAGE. Inhibition of PKA activity blocked ezrin phosphorylation and reduced the cell spreading response to cAMP elevation to levels induced by EPAC1-activation alone. Transfection of HEK293T-EPAC1 cells with inhibitory ezrin mutants lacking the key PKA phosphorylation site, ezrin-Thr567Ala, or the ability to associate with actin, ezrin-Arg579Ala, promoted cell arborisation and blocked the ability of EPAC1 and PKA to further promote cell spreading. The PKA phospho-mimetic mutants of ezrin, ezrin-Thr567Asp had no effect on EPAC1-driven cell spreading. Our results indicate that association of ezrin with the actin cytoskeleton and phosphorylation on Thr567 are required, but not sufficient, for PKA and EPAC1 to synergistically promote cell spreading following elevations in intracellular cAMP.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfotreonina/metabolismo , Animais , Células COS , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Chlorocebus aethiops , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Citoesqueleto/metabolismo , Genes Dominantes , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas dos Microfilamentos/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
16.
Methods Mol Biol ; 1294: 25-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25783875

RESUMO

Fluorescence resonance energy transfer (FRET)-based reporters are invaluable tools to study spatiotemporal aspects of cyclic adenosine monophosphate (cAMP) signaling and compartmentalization in living cells. These sensors allow estimation of relative changes of cAMP levels in real-time and intact cells. However, one of their major shortcomings is that they do not easily allow direct measurement of cAMP concentrations. This is mainly due to the fact that the methods to calibrate these sensors in their physiological microenvironment are not generally available. All published approaches to calibrate FRET-based reporters rely at least in part on data derived under nonphysiological conditions. Here, we present a protocol to calibrate FRET reporters completely "in cell." We introduce a combination of FRET imaging of cAMP and the whole-cell patch-clamp techniques to microinfuse or dilute intracellular cAMP to known concentrations. This method represents a general tool to accurately estimate intracellular cAMP concentrations by allocating concentration values to FRET ratio changes.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , AMP Cíclico/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Células CHO , Calibragem , Microambiente Celular , Cricetulus , Transferência Ressonante de Energia de Fluorescência/métodos
17.
Methods Mol Biol ; 1071: 59-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24052380

RESUMO

Förster resonance energy transfer (FRET)-based reporters are important tools to study the spatiotemporal compartmentalization of cyclic adenosine monophosphate (cAMP) in living cells. To increase the spatial resolution of cAMP detection, new reporters with specific intracellular targeting have been developed. Therefore it has become critical to be able to appropriately compare the signals revealed by the different sensors. Here we illustrate a protocol to calibrate the response detected by different targeted FRET reporters involving the generation of a dose-response curve to the cAMP raising agent forskolin. This method represents a general tool for the accurate analysis and interpretation of intracellular cAMP changes detected at the level of different subcellular compartments.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Animais , Células CHO , Colforsina/metabolismo , Cricetinae , Cricetulus , Fatores de Troca do Nucleotídeo Guanina/metabolismo
18.
J Cell Biol ; 198(4): 607-21, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22908311

RESUMO

Previous work has shown that the protein kinase A (PKA)-regulated phosphodiesterase (PDE) 4D3 binds to A kinase-anchoring proteins (AKAPs). One such protein, AKAP9, localizes to the centrosome. In this paper, we investigate whether a PKA-PDE4D3-AKAP9 complex can generate spatial compartmentalization of cyclic adenosine monophosphate (cAMP) signaling at the centrosome. Real-time imaging of fluorescence resonance energy transfer reporters shows that centrosomal PDE4D3 modulated a dynamic microdomain within which cAMP concentration selectively changed over the cell cycle. AKAP9-anchored, centrosomal PKA showed a reduced activation threshold as a consequence of increased autophosphorylation of its regulatory subunit at S114. Finally, disruption of the centrosomal cAMP microdomain by local displacement of PDE4D3 impaired cell cycle progression as a result of accumulation of cells in prophase. Our findings describe a novel mechanism of PKA activity regulation that relies on binding to AKAPs and consequent modulation of the enzyme activation threshold rather than on overall changes in cAMP levels. Further, we provide for the first time direct evidence that control of cell cycle progression relies on unique regulation of centrosomal cAMP/PKA signals.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Domínio Catalítico/fisiologia , Centrossomo/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Células CHO , Ciclo Celular/genética , Ciclo Celular/fisiologia , Cricetinae , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Proteínas do Citoesqueleto/genética , Humanos
19.
Atherosclerosis ; 207(1): 116-22, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19423111

RESUMO

OBJECTIVE: The bulk of LDL entrapped in the arterial intima is modified by hydrolytic enzymes, leading to extensive cleavage of cholesterylesters and liberation of fatty acids. The latter induce apoptosis in endothelial cells but are far less cytotoxic towards macrophages. We have compared the cytotoxic effects of enzymatically modified LDL (E-LDL) on macrophages and polymorphonuclear granulocytes (PMN). METHODS AND RESULTS: E-LDL displayed toxicity towards PMN at far lower concentrations than towards monocyte-derived macrophages. Native or oxidized LDL had no effect. Free fatty acids contained in E-LDL were the cause of the observed toxicity, which could be mimicked by linoleic acid, oleic acid and arachidonic acid. E-LDL provoked Ca(2+) influx and activated PMN, as witnessed by the generation of superoxide anions and peroxidase secretion. Inhibition of either oxidative burst or calcium influx did not diminish the cytotoxicity of E-LDL. Similar to free linoleic acid, E-LDL lysed red blood cells and rapidly rendered cells permeable to propidium iodide. CONCLUSION: Possibly through their capacity to directly perturb cell membranes, free fatty acids contained in E-LDL exert potent cytotoxic effects on PMN. This may be one reason why PMN are not abundantly present in atherosclerotic lesions, and why PMN-depletion suppresses atherogenesis.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Esterol Esterase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Araquidônico/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Morte Celular , Permeabilidade da Membrana Celular , Sobrevivência Celular , Células Cultivadas , Hemólise , Humanos , Hidrólise , L-Lactato Desidrogenase/metabolismo , Ácido Linoleico/metabolismo , Macrófagos/patologia , Neutrófilos/patologia , Ácido Oleico/metabolismo , Peroxidase/metabolismo , Coelhos , Explosão Respiratória , Superóxidos/metabolismo , Fatores de Tempo
20.
Biochimie ; 90(5): 717-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18291113

RESUMO

The connection between the action of microbial RNases and Ca2+-activated K+ (KCa) channels was investigated in human embryo kidney cells HEKhSK4 artificially expressing the channels. These channels protected HEKhSK4 cells from apoptosis induced by binase and 5K charge reversal mutant of RNase Sa. After the first 24h, potassium current increased without increase in intracellular Ca2+, and mitochondrial potential remained high. After 72 h, the concentration of calcium increased and mitochondria lost their potential. Whole-cell recordings of membrane currents through KCa channels in RNase-treated cells demonstrated a biphasic pattern: initially their activity in cell population increased, peaked at 24h, and then gradually decreased. In each individual cell we observed either an increase of the amplitude of KCa current, or a complete shutdown of the channels. The activity of KCa channels could be restored by removing RNases from the media. Based on this pattern and especially its timing, we hypothesize that toxic RNases downregulate KCa channels at the level of transcription or translation. Our results indicate that new anticancer agents could be created on the basis of microbial RNases targeting KCa channels.


Assuntos
Apoptose , Canais de Potássio Cálcio-Ativados/metabolismo , Ribonucleases/metabolismo , Cálcio/metabolismo , Linhagem Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA