Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(8): 1301-1312, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36426838

RESUMO

Fukuyama congenital muscular dystrophy (FCMD) is an autosomal recessive disorder caused by fukutin (FKTN) gene mutations. FCMD is the second most common form of childhood muscular dystrophy in Japan, and the most patients possess a homozygous retrotransposal SINE-VNTR-Alu insertion in the 3'-untranslated region of FKTN. A deep-intronic variant (DIV) was previously identified as the second most prevalent loss-of-function mutation in Japanese patients with FCMD. The DIV creates a new splicing donor site in intron 5 that causes aberrant splicing and the formation of a 64-base pair pseudoexon in the mature mRNA, resulting in a truncated nonfunctional protein. Patients with FCMD carrying the DIV present a more severe symptoms, and currently, there is no radical therapy available for this disorder. In the present study, we describe in vitro evaluation of antisense oligonucleotide mediated skipping of pseudoexon inclusion and restoration of functional FKTN protein. A total of 16 19-26-mer antisense oligonucleotide sequences were designed with a 2'-O-methyl backbone and were screened in patient-derived fibroblasts, lymphoblast cells and minigene splice assays. One antisense oligonucleotide targeting the exonic splice enhancer region significantly induced pseudoexon skipping and increased the expression of normal mRNA. It also rescued FKTN protein production in lymphoblast cells and restored functional O-mannosyl glycosylation of alpha-dystroglycan in patient-derived myotubes. Based on our results, antisense oligonucleotide-based splicing correction should be investigated further as a potential treatment for patients with FCMD carrying the DIV.One Sentence Summary Antisense oligonucleotide treatment restored normal FKTN protein production and functional O-mannosyl glycosylation of alpha-dystroglycan via pseudoexon skipping in patient-derived cells carrying the compound heterozygous deep-intronic variant of Fukuyama muscular dystrophy.


Assuntos
Síndrome de Walker-Warburg , Humanos , Síndrome de Walker-Warburg/genética , Oligonucleotídeos Antissenso/genética , Distroglicanas/metabolismo , Mutação , RNA Mensageiro
2.
Neuropsychopharmacol Rep ; 41(4): 485-495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529365

RESUMO

AIM: The striatum, a main component of the basal ganglia, is a critical part of the motor and reward systems of the brain. It consists of GABAergic and cholinergic neurons and receives projections of dopaminergic, glutamatergic, and serotonergic neurons from other brain regions. Brain-derived neurotrophic factor (BDNF) plays multiple roles in the central nervous system, and striatal BDNF has been suggested to be involved in psychiatric and neurodegenerative disorders. However, the transcriptomic impact of BDNF on the striatum remains largely unknown. In the present study, we performed transcriptomic profiling of striatal cells stimulated with BDNF to identify enriched gene sets (GSs) and their novel target genes in vitro. METHODS: We carried out RNA sequencing (RNA-Seq) of messenger RNA extracted from primary dissociated cultures of rat striatum stimulated with BDNF and conducted Generally Applicable Gene-set Enrichment (GAGE) analysis on 10599 genes. Significant differentially expressed genes (DEGs) were determined by differential expression analysis for sequence count data 2 (DESeq2). RESULTS: GAGE analysis identified significantly enriched GSs that included GSs related to regulation and dysregulation of synaptic functions, such as synaptic vesicle cycle and addiction to nicotine and morphine, respectively. It also detected GSs related to various types of synapses, including not only GABAergic and cholinergic synapses but also dopaminergic and glutamatergic synapses. DESeq2 revealed 72 significant DEGs, among which the highest significance was observed in the apolipoprotein L domain containing 1 (Apold1). CONCLUSIONS: The present study indicates that BDNF predominantly regulates the expression of synaptic-function-related genes and that BDNF promotes synaptogenesis in various subtypes of neurons in the developing striatum. Apold1 may represent a unique target gene of BDNF in the striatum.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Corpo Estriado , Transcriptoma , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/metabolismo , Neurônios/metabolismo , Ratos , Sinapses/metabolismo
3.
Neuropsychopharmacol Rep ; 40(3): 275-280, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32558188

RESUMO

AIM: Chromosome 8 open reading frame 46 (C8orf46), a human protein-coding gene, has recently been named Vexin. A recent study indicated that Vexin is involved in embryonic neurogenesis. Additionally, some transcriptomic studies detected changes in the mRNA levels of patients with psychiatric and neurological diseases. In our previous study, we sought for target genes of brain-derived neurotrophic factor (BDNF) in cultured rat cortical neurons, finding that BDNF potentially leads to the upregulation of Vexin mRNA. However, its underlying mechanisms are unknown. In the present study, we assessed the regulatory mechanisms of the BDNF-induced gene expression of Vexin in vitro. METHODS: We reanalyzed ChIP-seq data in various human organs provided by the ENCODE project, evaluating acetylation levels of the 27th lysine residue of the histone H3 (H3K27ac) at the Vexin locus. The transcriptomic effects of BDNF on rat Vexin (RGD1561849) were evaluated by real-time quantitative PCR (RT-qPCR) in primary cultures of cerebral cortical neurons, in the presence or absence of inhibitors for signaling molecules activated by BDNF. RESULTS: The Vexin locus and its promoter region in the brain angular gyrus show higher acetylation levels of the H3K27 than those in other organs. Stimulation of cultured rat cortical neurons, but not astrocyte, with BDNF, led to marked elevations in the mRNA levels of Vexin, which was inhibited in the presence of K252a and U0126. CONCLUSION: The upregulated H3K27ac in the brain may be associated with the enriched gene expression of Vexin in the brain. It is indicated that BDNF induces the gene expression of Vexin in the cortical neurons via the TrkB-MEK signaling pathway.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Regulação para Cima/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
4.
Transl Psychiatry ; 9(1): 52, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705256

RESUMO

Major depressive disorder (MDD) is a common and disabling psychiatric disorder. A recent mega analysis of genome-wide association studies (GWASs) identified 44 loci associated with MDD, though most of the genetic etiologies of the MDD/psychological distress remain unclear. To further understand the genetic basis of MDD/psychological distress, we conducted a GWAS in East Asia with more than 10,000 participants of Japanese ancestry who had enrolled in a direct-to-consumer genetic test. After quality control on the genotype data, 10,330 subjects with a total of 8,567,708 imputed SNPs were eligible for the analysis. The participants completed a self-administered questionnaire on their past medical history and health conditions that included the 6-item Kessler screening scale (K6 scale) for psychological distress (cut-off point of 5) and past medical history of MDD, resulting in 3981 subjects assigned to "psychologically distressed group" [cases], and the remaining 6349 subjects were assigned to the "non-psychologically distressed group" [controls]. In this GWAS, we found an association with genome-wide significance at rs6073833 (P = 7.60 × 10-9) in 20q13.12. This is, to the best of our knowledge, the first large-scale GWAS for psychological distress using data from direct-to-consumer (DTC) genetic tests in a population of non-European-ancestry, and the present study thus detected a novel locus significantly associated with psychological distress in the Japanese population.


Assuntos
Transtorno Depressivo Maior/genética , Estresse Psicológico/genética , Adulto , Povo Asiático/genética , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
Neuropsychopharmacol Rep ; 39(1): 56-60, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472790

RESUMO

AIM: Tryptophan hydroxylase 2 (Tph2) is a rate-limiting enzyme for the biosynthesis of 5-hydroxytryptamine (5-HT, serotonin). Previous studies have reported that C1473G polymorphism of the murine Tph2 gene leads to decreased 5-HT levels in the brain and abnormal behavioral phenotypes, such as impaired anxiety- and depression-like behaviors. In this study, to confirm the effect of the C1473G polymorphism on mouse phenotypes, we conducted a comprehensive battery of behavioral tests and measured the amounts of brain free amino acids involved in the production of 5-HT. METHODS: We obtained C57BL/6J congenic mice that were homozygous for the 1473G allele of Tph2 (1473G) and subjected them and their wild-type littermates (1473C) to a battery of behavioral tests. Using reverse-phase high-performance liquid chromatography (HPLC), we measured the amounts of free amino acids in the 5-HT and epinephrine synthetic/metabolic pathways in the frontal cortex, hippocampus, striatum, and midbrain. RESULTS: We failed to detect significant differences between genotypes in depression-like behaviors, anxiety-like behaviors, social behaviors, sensorimotor gaiting, or learning and memory, while 1473G mice exhibited a nominally significant impairment in gait analysis, which failed to reach study-wide significance. In the HPLC analysis, there were no significant differences in the amounts of 5-HT, dopamine, norepinephrine, and epinephrine in the frontal cortex, hippocampus, striatum, and midbrain. CONCLUSION: Our findings do not support the idea that congenic C57BL/6J mice carrying the 1473G allele may represent an animal model of mood disorder under normal conditions without stress.


Assuntos
Aminoácidos/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Mutação de Sentido Incorreto , Triptofano Hidroxilase/genética , Animais , Epinefrina/metabolismo , Aprendizagem , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Serotonina/metabolismo
6.
J Neurochem ; 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29355947

RESUMO

A recent study revealed that corticotropin-releasing hormone (CRH) in the cerebral cortex (CTX) plays a regulatory role in emotional behaviors in rodents. Given the functional interaction between brain-derived neurotrophic factor (BDNF) and the CRH-signaling pathway in the hypothalamic-pituitary-adrenal axis, we hypothesized that BDNF may regulate gene expression of CRH and its related molecules in the CTX. Findings of real-time quantitative PCR (RT-qPCR) indicated that stimulation of cultured rat cortical neurons with BDNF led to marked elevations in the mRNA levels of CRH and CRH-binding protein (CRH-BP). The BDNF-induced up-regulation of CRH-BP mRNA was attenuated by inhibitors of tropomyosin related kinase (Trk) and MEK, but not by an inhibitor for PI3K and Phospholipase C gamma (PLCγ). The up-regulation was partially blocked by an inhibitor of lysine-specific demethylase (KDM) 6B. Fluorescent imaging identified the vesicular pattern of pH-sensitive green fluorescent protein-fused CRH-BP (CRH-BP-pHluorin), which co-localized with mCherry-tagged BDNF in cortical neurons. In addition, live-cell imaging detected drastic increases of pHluorin fluorescence in neurites upon membrane depolarization. Finally, we confirmed that tetrodotoxin partially attenuated the BDNF-induced up-regulation of CRH-BP mRNA, but not that of the protein. These observations indicate the following: In cortical neurons, BDNF led to gene expression of CRH-BP and CRH. TrkB, MEK, presumably ERK, and KDM6B are involved in the BDNF-induced gene expression of CRH-BP, and BDNF is able to induce the up-regulation in a neuronal activity-independent manner. It is suggested that CRH-BP is stored into BDNF-containing secretory granules in cortical neurons, and is secreted in response to membrane depolarization.

7.
Sci Rep ; 7: 44531, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295046

RESUMO

Alcoholism, which is defined as the recurring harmful use of alcohol despite its negative consequences, has a lifetime prevalence of 17.8%. Previous studies have shown that chronic alcohol consumption disrupts various brain functions and behaviours. However, the precise mechanisms that underlie alcoholism are currently unclear. Recently, we discovered "pseudo-immature" brain cell states of the dentate gyrus and prefrontal cortex (PFC) in mouse models of psychotic disorders and epileptic seizure. Similar pseudo-immaturity has been observed in patients with psychotic disorders, such as schizophrenia and bipolar disorder. Patients with alcoholism occasionally exhibit similar psychological symptoms, implying shared molecular and cellular mechanisms between these diseases. Here, we performed a meta-analysis to compare microarray data from the hippocampi/PFCs of the patients with alcoholism to data from these regions in developing human brains and mouse developmental data for specific cell types. We identified immature-like gene expression patterns in post-mortem hippocampi/PFCs of alcoholic patients and the dominant contributions of fast-spiking (FS) neurons to their pseudo-immaturity. These results suggested that FS neuron dysfunction and the subsequent imbalance between excitation and inhibition can be associated with pseudo-immaturity in alcoholism. These immaturities in the hippocampi/PFCs and the underlying mechanisms may explain the psychotic symptom generation and pathophysiology of alcoholism.


Assuntos
Alcoolismo/genética , Giro Denteado/metabolismo , Córtex Pré-Frontal/metabolismo , Transcriptoma/genética , Alcoolismo/metabolismo , Alcoolismo/patologia , Animais , Autopsia , Linhagem da Célula/genética , Giro Denteado/patologia , Feminino , Regulação da Expressão Gênica , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Análise em Microsséries , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/patologia
8.
Peptides ; 89: 42-49, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119091

RESUMO

Accumulating evidence suggests functional interaction between brain-derived neurotrophic factor (BDNF) and metabotropic glutamate receptor (mGluR) signaling pathways in the central nervous system (CNS). To date, eight subtypes of mGluRs, mGluR1-8, have been identified, and a previous study suggested that BDNF leads to down-regulation of GluR2 mRNA in rat cerebral cortical cultures. However, precise transcriptomic effects of BDNF on other mGluRs and their cellular significance on the BDNF signaling pathway remain largely unknown. In this study, we assessed the transcriptomic effects of BDNF on mGluR1-8 in primary cultures of rat cerebral cortical neurons, and transcriptomic impacts of mGluR(s) whose expression is regulated by BDNF, on BDNF target genes. Real-time quantitative PCR (RT-qPCR) revealed that stimulation of the cultures with 100ng/mL BDNF led to marked reductions not only in the gene expression levels of mGluR2, but also in those of mGluR3, both of which belong to group II mGluRs (mGluR II). There were, on the other hand, no changes in the amounts of mGluR I (mGluR1 and 5) and III (mGluR4, 6, 7, and 8) mRNA. Further, 10ng/mL of BDNF, which mainly activates the high-affinity BDNF receptor, TrkB, but not the low-affinity receptor, p75NTR, was able to induce down-regulation of mGluR II mRNA. The BDNF-induced suppression of mGluR II was not significantly attenuated in the presence of tetrodotoxin (TTX), a blocker for voltage-gated sodium channels. In addition, on stimulation with BDNF (100ng/mL), no significant down-regulation of mGluR II mRNA was seen in cultured astrocytes, which only express the truncated form of TrkB. Finally, we assessed the transcriptomic effect of mGluR II on the expressions of BDNF target genes, BDNF and activity-regulated cytoskeleton-associated protein (Arc). LY404039, an mGluR II agonist, enhanced the BDNF-induced up-regulation of BDNF, but not Arc. On the other hand, LY341495, an mGluR II antagonist, down-regulated BDNF mRNA levels. Collectively, these observations demonstrated the detailed functional interaction between BDNF and mGluR II: Activation of mGluR II positively regulates self-induced BDNF expression, and, in turn, BDNF negatively regulates the gene expression of mGluR II in a neuronal activity-independent manner, in cortical neurons, but not in astrocytes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Neurônios/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Astrócitos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Cultura Primária de Células , Ratos , Receptor de Fator de Crescimento Neural/biossíntese , Receptor trkB/biossíntese , Receptores de Glutamato Metabotrópico/genética , Transcriptoma/genética
9.
PLoS One ; 9(2): e89584, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586890

RESUMO

Cluster of differentiation 47 (CD47) is a member of the immunoglobulin superfamily which functions as a ligand for the extracellular region of signal regulatory protein α (SIRPα), a protein which is abundantly expressed in the brain. Previous studies, including ours, have demonstrated that both CD47 and SIRPα fulfill various functions in the central nervous system (CNS), such as the modulation of synaptic transmission and neuronal cell survival. We previously reported that CD47 is involved in the regulation of depression-like behavior of mice in the forced swim test through its modulation of tyrosine phosphorylation of SIRPα. However, other potential behavioral functions of CD47 remain largely unknown. In this study, in an effort to further investigate functional roles of CD47 in the CNS, CD47 knockout (KO) mice and their wild-type littermates were subjected to a battery of behavioral tests. CD47 KO mice displayed decreased prepulse inhibition, while the startle response did not differ between genotypes. The mutants exhibited slightly but significantly decreased sociability and social novelty preference in Crawley's three-chamber social approach test, whereas in social interaction tests in which experimental and stimulus mice have direct contact with each other in a freely moving setting in a novel environment or home cage, there were no significant differences between the genotypes. While previous studies suggested that CD47 regulates fear memory in the inhibitory avoidance test in rodents, our CD47 KO mice exhibited normal fear and spatial memory in the fear conditioning and the Barnes maze tests, respectively. These findings suggest that CD47 is potentially involved in the regulation of sensorimotor gating and social behavior in mice.


Assuntos
Comportamento Animal/fisiologia , Antígeno CD47/fisiologia , Medo/fisiologia , Atividade Motora/fisiologia , Nociceptividade/fisiologia , Comportamento Social , Animais , Ansiedade/etiologia , Ansiedade/psicologia , Depressão/etiologia , Depressão/psicologia , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
BMC Res Notes ; 6: 203, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23688147

RESUMO

BACKGROUND: The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1(Rgsc174)/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1(Rgsc174)/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1(Rgsc174)/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. RESULTS: There was no significant difference in nociception between Grin1(Rgsc174)/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1(Rgsc174)/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious deficits in social behaviors in three different social interaction tests. CONCLUSIONS: This study demonstrated that the Grin1(Rgsc174)/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1(Rgsc174)/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders.


Assuntos
Acústica , Ansiedade/genética , Proteínas de Transporte/genética , Etilnitrosoureia/toxicidade , Memória , Mutagênese , Proteínas do Tecido Nervoso/genética , Reflexo de Sobressalto , Animais , Comportamento Animal , Medo , Locomoção , Camundongos , Camundongos Mutantes , Receptores de N-Metil-D-Aspartato
11.
Neuropsychopharmacology ; 38(8): 1409-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23389689

RESUMO

Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/deficiência , Neurônios/metabolismo , Fenótipo , Esquizofrenia/metabolismo , Animais , Encéfalo/patologia , Doença Crônica , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/patologia , Esquizofrenia/patologia
12.
Mol Brain ; 5: 10, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22463818

RESUMO

BACKGROUND: In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. RESULTS: In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. CONCLUSIONS: These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.


Assuntos
Comportamento Animal/fisiologia , Inibição Neural/fisiologia , Receptor Muscarínico M4/deficiência , Comportamento Social , Animais , Escuridão , Aprendizagem em Labirinto/fisiologia , Memória Episódica , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Atividade Motora/fisiologia , Nociceptividade/fisiologia , Receptor Muscarínico M4/metabolismo , Reflexo de Sobressalto/fisiologia
13.
FASEB J ; 26(7): 2888-98, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22459152

RESUMO

Three forms of serpinin peptides, serpinin (Ala26Leu), pyroglutaminated (pGlu)-serpinin (pGlu23Leu), and serpinin-Arg-Arg-Gly (Ala29Gly), are derived from cleavage at pairs of basic residues in the highly conserved C terminus of chromogranin A (CgA). Serpinin induces PN-1 expression in neuroendocrine cells to up-regulate granule biogenesis via a cAMP-protein kinase A-Sp1 pathway, while pGlu-serpinin inhibits cell death. The aim of this study was to test the hypothesis that serpinin peptides are produced in the heart and act as novel ß-adrenergic-like cardiac modulators. We detected serpinin peptides in the rat heart by HPLC and ELISA methods. The peptides included predominantly Ala29Gly and pGlu-serpinin and a small amount of serpinin. Using the Langendorff perfused rat heart to evaluate the hemodynamic changes, we found that serpinin and pGlu-serpinin exert dose-dependent positive inotropic and lusitropic effects at 11-165 nM, within the first 5 min after administration. The pGlu-serpinin-induced contractility is more potent than that of serpinin, starting from 1 nM. Using the isolated rat papillary muscle preparation to measure contractility in terms of tension development and muscle length, we further corroborated the pGlu-serpinin-induced positive inotropism. Ala29Gly was unable to affect myocardial performance. Both pGlu-serpinin and serpinin act through a ß1-adrenergic receptor/adenylate cyclase/cAMP/PKA pathway, indicating that, contrary to the ß-blocking profile of the other CgA-derived cardiosuppressive peptides, vasostatin-1 and catestatin, these two C-terminal peptides act as ß-adrenergic-like agonists. In cardiac tissue extracts, pGlu-serpinin increased intracellular cAMP levels and phosphorylation of phospholamban (PLN)Ser16, ERK1/2, and GSK-3ß. Serpinin and pGlu-serpinin peptides emerge as novel ß-adrenergic inotropic and lusitropic modulators, suggesting that CgA and the other derived cardioactive peptides can play a key role in how the myocardium orchestrates its complex response to sympathochromaffin stimulation.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Cardiotônicos/química , Cardiotônicos/farmacologia , Cromogranina A/química , Cromogranina A/fisiologia , Coração/efeitos dos fármacos , Coração/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/fisiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Cromogranina A/genética , Cromogranina A/farmacologia , Técnicas In Vitro , Masculino , Dados de Sequência Molecular , Contração Miocárdica/efeitos dos fármacos , Miocárdio/química , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/fisiologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Wistar
14.
Cell Mol Neurobiol ; 31(7): 1027-32, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21553247

RESUMO

Brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1 (BIT/SHPS-1) is a neuronal adhesion molecule that is highly expressed in cerebellar granule neurons (CGNs); however its function in CGNs remains unclear. Our previous studies indicated that BIT/SHPS-1 is able to modulate the antiapoptotic effect of brain-derived neurotrophic factor (BDNF) on CNS neurons by cell type-specific mechanisms. In this article, we have studied the role of BIT/SHPS-1 in the antiapoptotic function of BDNF on low potassium (LK)-induced cell death of cultured CGNs which is an in vitro model system of neuronal apoptosis during brain development. Cultured rat CGNs were transduced with wild-type rat BIT/SHPS-1 (BIT/SHPS-1(WT)), its 4F-mutant (BIT/SHPS-1(4F), in which all cytoplasmic tyrosine residues were substituted with phenylalanine), or nuclear localization signal-attached beta-galactosidase (NLS-LacZ, as control)-expressing adenoviruses. Expression of BIT/SHPS-1(WT) and BIT/SHPS-1(4F) alone did not affect steady-state cell viability. Tyrosine phosphorylation of BIT/SHPS-1 was only detected in BIT/SHPS-1(WT)-expressing cultures in the presence and the absence of BDNF. When subjected to LK in the presence of BDNF, BIT/SHPS-1(WT)- and BIT/SHPS-1(4F)-expressing cultures showed a significant resistance to cell death, while the control virus-transfected culture did not. In addition, a phosphatidylinositol 3-kinase (PI3-K) inhibitor, LY294002, attenuated the antiapoptotic effect of BDNF on BIT/SHPS-1(WT)-, and BIT/SHPS-1(4F)-expressing cultures. These results demonstrated that in both tyrosine phosphorylation-independent and PI3-K-dependent manners, BIT/SHPS-1 promotes the antiapoptotic effect of BDNF on the LK-induced cell death of CGNs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Morte Celular/efeitos dos fármacos , Cerebelo/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores Imunológicos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromonas/farmacologia , Células HEK293 , Humanos , Morfolinas/farmacologia , Neurônios/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Potássio/metabolismo , Ratos , Ratos Wistar , Receptores Imunológicos/genética
15.
J Mol Neurosci ; 45(2): 294-303, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21537909

RESUMO

Chromogranin A (CgA) is a member of the granin family of molecules found in secretory granules of endocrine and neuro-endocrine cells. Here, we have identified a new 23-mer CgA-derived peptide secreted from pituitary AtT-20 cells, which we named pyroGlu-serpinin (pGlu-serpinin). LC-MS studies of peptides in conditioned medium of AtT-20 cells indicate that pGlu-serpinin is derived from initial processing of mouse CgA at paired basic residues, Arg461-Arg462 and Arg433-Arg434, to yield a previously described 26 amino acid peptide, serpinin. Three amino acids are then cleaved from the N terminus of serpinin, yielding a peptide with an N-terminal glutamine, which is then subsequently pyroglutaminated. Immunocytochemistry showed co-localization of pGlu-serpinin with adrenocorticotropic hormone in secretory granules of AtT-20 cells, and it was released in an activity-dependent manner. Functional studies demonstrated that pGlu-serpinin was able to prevent radical oxygen species (hydrogen peroxide)-induced cell death of AtT-20 cells and cultured rat cerebral cortical neurons at a concentration of 1 and 10 nM, respectively. These data indicate that pGlu-serpinin has anti-apoptotic effects that may be important in neuroprotection of central nervous system neurons and pituitary cells. Furthermore, pGlu-serpinin added to the media of AtT-20 cells up-regulated the transcription of the serine protease inhibitor, protease nexin-1 (PN-1) mRNA. pGlu-serpinin's ability to increase levels of PN-1, a potent inhibitor of plasmin released during inflammatory processes causing cell death, may play a role in protecting cells under adverse pathophysiological conditions.


Assuntos
Morte Celular/fisiologia , Cromogranina A/química , Cromogranina A/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cromogranina A/genética , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Ratos , Serpina E2/genética , Serpina E2/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Mol Endocrinol ; 25(5): 732-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21436258

RESUMO

Previously we demonstrated that chromogranin A (CgA) promoted secretory granule biogenesis in endocrine cells by stabilizing and preventing granule protein degradation in the Golgi, through up-regulation of expression of the protease inhibitor, protease nexin-1 (PN-1). However, the mechanism by which CgA signals the increase of PN-1 expression is unknown. Here we identified a 2.9-kDa CgA-C-terminus peptide, which we named serpinin, in conditioned media from AtT-20 cells, a corticotroph cell line, which up-regulated PN-1 mRNA expression. Serpinin was secreted from AtT-20 cells upon high potassium stimulation and increased PN-1 mRNA transcription in these cells, in an actinomycin D-inhibitable manner. CgA itself and other CgA-derived peptides, when added to AtT-20 cell media, had no effect on PN-1 expression. Treatment of AtT-20 cells with 10 nm serpinin elevated cAMP levels and PN-1 mRNA expression, and this effect was inhibited by a protein kinase A inhibitor, 6-22 amide. Serpinin and a cAMP analog, 8-bromo-cAMP, promoted the translocation of the transcription factor Sp1 into the nucleus, which is known to drive PN-1 expression. Additionally, an Sp1 inhibitor, mithramycin A inhibited the serpinin-induced PN-1 mRNA up-regulation. Furthermore, a luciferase reporter assay demonstrated serpinin-induced up-regulation of PN-1 promoter activity in an Sp1-dependent manner. When added to CgB-transfected 6T3 cells, a mutant AtT20 cell line, serpinin induced granule biogenesis as evidenced by the presence of CgB puncta accumulation in the processes and tips. Our findings taken together show that serpinin, a novel CgA-derived peptide, is secreted upon stimulation of corticotrophs and plays an important autocrine role in up-regulating PN-1-dependent granule biogenesis via a cAMP-protein kinase A-Sp1 pathway to replenish released granules.


Assuntos
Cromogranina A/metabolismo , Células Endócrinas/metabolismo , Fragmentos de Peptídeos/metabolismo , Vesículas Secretórias/metabolismo , Serpina E2/genética , Regulação para Cima , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromogranina A/farmacologia , Meios de Cultivo Condicionados/química , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/farmacologia , Hipófise/citologia , Hipófise/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Alinhamento de Sequência , Serpina E2/metabolismo , Serpinas , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
17.
Front Behav Neurosci ; 5: 85, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22347851

RESUMO

A tumor suppressor gene, Adenomatous polyposis coli (Apc), is expressed in the nervous system from embryonic to adulthood stages, and transmits the Wnt signaling pathway in which schizophrenia susceptibility genes, including T-cell factor 4 (TCF4) and calcineurin (CN), are involved. However, the functions of Apc in the nervous system are largely unknown. In this study, as the first evaluation of Apc function in the nervous system, we have investigated the behavioral significance of the Apc gene, applying a battery of behavioral tests to Apc heterozygous knockout (Apc(+/-)) mice. Apc(+/-) mice showed no significant impairment in neurological reflexes or sensory and motor abilities. In various tests, including light/dark transition, open-field, social interaction, eight-arm radial maze, and fear conditioning tests, Apc(+/-) mice exhibited hypoactivity. In the eight-arm radial maze, Apc(+/-) mice 6-7 weeks of age displayed almost normal performance, whereas those 11-12 weeks of age showed a severe performance deficit in working memory, suggesting that Apc is involved in working memory performance in an age-dependent manner. The possibility that anemia, which Apc(+/-) mice develop by 17 weeks of age, impairs working memory performance, however, cannot be excluded. Our results suggest that Apc plays a role in the regulation of locomotor activity and presumably working memory performance.

18.
Regul Pept ; 165(1): 95-101, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-20920534

RESUMO

Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells.

19.
Neurosci Lett ; 473(3): 229-32, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20219632

RESUMO

Recent studies have focused on a distinctive contrast between bioactivities of precursor brain-derived neurotrophic factor (proBDNF) and mature BDNF (matBDNF). In this study, using a proteolytic cleavage-resistant proBDNF mutant (CR-proBDNF), signaling mechanisms underlying the proapoptotic effect of proBDNF and antiapoptotic effect of matBDNF on the low potassium (LK)-inducing cell death of cultured cerebellar granule neurons (CGNs) were analyzed. A time course study demonstrated that unlike matBDNF, CR-proBDNF failed to induce TrkB phosphorylation for up to 360 min. CR-proBDNF did not activate ERK-1, ERK-2 and Akt, which are involved in TrkB-induced cell survival signaling, while matBDNF activated these kinases. On the other hand treatment of CGNs with CR-proBDNF led to a rapid activation of Rac-GTPase and phosphorylation of JNK which are involved in p75(NTR)-induced apoptosis. In addition, a JNK-specific inhibitor, SP600125, inhibited the CR-proBDNF-induced apoptosis but did not affect the antiapoptotic effect of matBDNF. CR-proBDNF treatment led to an earlier appearance of active caspase-3. In contrast, matBDNF dramatically postponed the appearance of active caspase-3. Not like other signaling molecules, activation of caspase-3 was conversely regulated by both CR-proBDNF and matBDNF. These results thus suggest that in CGNs proBDNF elicits apoptosis via activation of p75(NTR), Rac-GTPase, JNK, and caspase-3, while matBDNF signals cell survival via activation of TrkB, ERKs and Akt, and deactivation of caspase-3.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Cerebelo/metabolismo , Neurônios/metabolismo , Precursores de Proteínas/fisiologia , Animais , Caspase 3/fisiologia , Morte Celular , Células Cultivadas , Cerebelo/citologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , MAP Quinase Quinase 4/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Ratos Wistar , Receptor trkB/fisiologia , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/fisiologia , Transdução de Sinais , Proteínas rac de Ligação ao GTP/fisiologia
20.
Regul Pept ; 160(1-3): 153-9, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20006653

RESUMO

Chromogranin A (CgA), a member of the granin family serves several important cell biological roles in (neuro)endocrine cells which are summarized in this review. CgA is a "prohormone" that is synthesized at the rough endoplasmic reticulum and transported into the cisternae of this organelle via its signal peptide. It is then trafficked to the Golgi complex and then to the trans-Golgi network (TGN) where CgA aggregates at low pH in the presence of calcium. The CgA aggregates provide the physical driving force to induce budding of the TGN membrane resulting in dense core granule (DCG) formation. Within the granule, a small amount of the CgA is processed to bioactive peptides, including a predicted C-terminal peptide, serpinin. Upon stimulation, DCGs undergo exocytosis and CgA and its derived peptides are released. Serpinin, acting extracellularly is able to signal the increase in transcription of a serine protease inhibitor, protease nexin-1 (PN-1) that protects DCG proteins against degradation in the Golgi complex, which then enhances DCG biogenesis to replenish those that were released. Thus CgA and its derived peptide, serpinin, plays a significant role in granule formation and regulation of granule biogenesis, respectively, in (neuro) endocrine cells.


Assuntos
Cromogranina A/metabolismo , Transporte Proteico , Vesículas Secretórias/metabolismo , Animais , Humanos , Sinais Direcionadores de Proteínas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA