Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oral Health ; 5: 1430077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953010

RESUMO

Introduction: Oral herpes infections caused by herpes simplex virus type 1 (HSV-1) are one of the most common in the human population. Recently, they have been classified as an increasing problem in immunocompromised patients and those suffering from chronic inflammation of the oral mucosa and gums. Treatment mainly involves nucleoside analogues, such as acyclovir and its derivatives, which reduce virus replication and shedding. As drug-resistant strains of herpes emerge rapidly, there is a need for the development of novel anti-herpes agents. The aim of the study was to design an antiviral peptide, based on natural compounds, non-toxic to the host, and efficient against drug-resistant HSV-1. Here, we designed a lysine-rich derivative of amphibian temporin-1CEb conjugated to peptides penetrating the host cell membrane and examined their activity against HSV-1 infection of oral mucosa. Methods: We assessed the antiviral efficiency of the tested compound in simple 2D cell models (VeroE6 and TIGKs cells) and a 3D organotypic model of human gingiva (OTG) using titration assay, qPCR, and confocal imaging. To identify the molecular mechanism of antiviral activity, we applied the Azure A metachromatic test, and attachment assays techniques. Toxicity of the conjugates was examined using XTT and LDH assays. Results: Our results showed that temporin-1CEb analogues significantly reduce viral replication in oral mucosa. The mechanism of peptide analogues is based on the interaction with heparan sulfate, leading to the reduce attachment of HSV-1 to the cell membrane. Moreover, temporin-1CEb conjugates effectively penetrate the gingival tissue being effective against acyclovir-resistant strains. Collectively, we showed that temporin-1CEb can be regarded as a novel, naturally derived antiviral compound for HSV-1 treatment.

2.
Talanta ; 273: 125881, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492283

RESUMO

This work describes fabrication of gold electrodes modified with peptide conjugate DAL-PEG-DK5-PEG-OH that enables ultra-sensitive detection of lipopolysaccharide (LPS) isolated from the reference strain of Escherichia coli O26:B6. The initial step of the established procedure implies immobilization of the fully protected DAL-PEG-DK5-PEG-OH peptide on the surface of the gold electrode previously modified by cysteamine. Then side chain- and Fmoc-deprotection was performed in situ on the electrode surface, followed by its incubation in 1 % of BSA solution to block non-specific bindings sites before LPS detection. The efficiency of the modification was confirmed by X-ray Photoelectron Spectroscopy (XPS) measurements. Additionally, the cyclic voltammetry (CV) and electrochemical impendance spectroscopy (EIS) were employed to monitor the effectiveness of each step of the modification. The obtained results confirmed that the presence of the surface-attached covalently bound peptide DAL-PEG-DK5-PEG-OH enables LPS detection by means of CV technique within the range from 5 × 10-13 to 5 × 10-4 g/mL in PBS solution. The established limit of detection (LOD) for EIS measurements was 4.93 × 10-21 g/mL with wide linear detection range from 5 × 10-21 to 5 × 10-14 g/mL in PBS solution. Furthermore, we confirmed the ability of the electrode to detect LPS in a complex biological samples, like mouse urine and human serum. The effectiveness of the electrodes in identifying LPS in both urine and serum matrices was confirmed for samples containing LPS at both 2.5 × 10-15 g/mL and 2.5 × 10-9 g/mL.


Assuntos
Técnicas Biossensoriais , Lipopolissacarídeos , Animais , Camundongos , Humanos , Ouro/química , Peptídeos Antimicrobianos , Endotoxinas , Eletrodos , Peptídeos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835362

RESUMO

In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8-C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Humanos , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Conformação Proteica em alfa-Hélice
4.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293413

RESUMO

Human ß-defensin 3, HBD-3, is a 45-residue antimicrobial and immunomodulatory peptide that plays multiple roles in the host defense system. In addition to interacting with cell membranes, HBD-3 is also a ligand for melanocortin receptors, cytokine receptors and voltage-gated potassium channels. Structural and functional studies of HBD-3 have been hampered by inefficient synthetic and recombinant expression methods. Herein, we report an optimized Fmoc solid-phase synthesis of this peptide using an orthogonal disulfide bonds formation strategy. Our results suggest that utilization of an optimized resin, coupling reagents and pseudoproline dipeptide building blocks decrease chain aggregation and largely improve the amount of the target peptide in the final crude material, making the synthesis more efficient. We also present an alternative synthesis of HBD-3 in which a replacement of a native disulfide bridge with a diselenide bond improved the oxidative folding. Our work enables further biological and pharmacological characterization of HBD-3, hence advancing our understanding of its therapeutic potential.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , beta-Defensinas , Humanos , Técnicas de Síntese em Fase Sólida , Sequência de Aminoácidos , Ligantes , Dissulfetos/química , Peptídeos/química , Dipeptídeos , Receptores de Citocinas
5.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206444

RESUMO

The alarming raise of multi-drug resistance among human microbial pathogens makes the development of novel therapeutics a priority task. In contrast to conventional antibiotics, antimicrobial peptides (AMPs), besides evoking a broad spectrum of activity against microorganisms, could offer additional benefits, such as the ability to neutralize toxins, modulate inflammatory response, eradicate bacterial and fungal biofilms or prevent their development. The latter properties are of special interest, as most antibiotics available on the market have limited ability to diffuse through rigid structures of biofilms. Lipidation of AMPs is considered as an effective approach for enhancement of their antimicrobial potential and in vivo stability; however, it could also have undesired impact on selectivity, solubility or the aggregation state of the modified peptides. In the present work, we describe the results of structural modifications of compounds designed based on cationic antimicrobial peptides DK5 and CAR-PEG-DK5, derivatized at their N-terminal part with fatty acids with different lengths of carbon chain. The proposed modifications substantially improved antimicrobial properties of the final compounds and their effectiveness in inhibition of biofilm development as well as eradication of pre-formed 24 h old biofilms of Candida albicans and Staphylococcus aureus. The most active compounds (C5-DK5, C12-DK5 and C12-CAR-PEG-DK5) were also potent against multi-drug resistant Staphylococcus aureus USA300 strain and clinical isolates of Pseudomonas aeruginosa. Both experimental and in silico methods revealed strong correlation between the length of fatty acid attached to the peptides and their final membranolytic properties, tendency to self-assemble and cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade , Termodinâmica
6.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255674

RESUMO

Antimicrobial peptides (AMPs) constitute a promising tool in the development of novel therapeutic agents useful in a wide range of bacterial and fungal infections. Among the modifications improving pharmacokinetic and pharmacodynamic characteristics of natural AMPs, an important role is played by lipidation. This study focuses on the newly designed and synthesized lipopeptides containing multiple Lys residues or their shorter homologues with palmitic acid (C16) attached to the side chain of a residue located in the center of the peptide sequence. The approach resulted in the development of lipopeptides representing a model of surfactants with two polar headgroups. The aim of this study is to explain how variations in the length of the peptide chain or the hydrocarbon side chain of an amino acid residue modified with C16, affect biological functions of lipopeptides, their self-assembling propensity, and their mode of action.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Infecções Bacterianas/tratamento farmacológico , Lipopeptídeos/química , Micoses/tratamento farmacológico , Sequência de Aminoácidos/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Infecções Bacterianas/microbiologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Escherichia coli/efeitos dos fármacos , Humanos , Lipopeptídeos/genética , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557917

RESUMO

Staphylococcus aureus is a major infectious agent responsible for a plethora of superficial skin infections and systemic diseases, including endocarditis and septic arthritis. Recent epidemiological data revealed the emergence of resistance to commonly used antibiotics, including increased numbers of both hospital- and community-acquired methicillin-resistant S. aureus (MRSA). Due to their potent antimicrobial functions, low potential to develop resistance, and immunogenicity, antimicrobial peptides (AMPs) are a promising alternative treatment for multidrug-resistant strains. Here, we examined the activity of a lysine-rich derivative of amphibian temporin-1CEb (DK5) conjugated to peptides that exert pro-proliferative and/or cytoprotective activity. Analysis of a library of synthetic peptides to identify those with antibacterial potential revealed that the most potent agent against multidrug-resistant S. aureus was a conjugate of a temporin analogue with the synthetic Leu-enkephalin analogue dalargin (DAL). DAL-PEG-DK5 exerted direct bactericidal effects via bacterial membrane disruption, leading to eradication of both planktonic and biofilm-associated staphylococci. Finally, we showed that accumulation of the peptide in the cytoplasm of human keratinocytes led to a marked clearance of intracellular MRSA, resulting in cytoprotection against invading bacteria. Collectively, the data showed that DAL-PEG-DK5 might be a potent antimicrobial agent for treatment of staphylococcal skin infections.


Assuntos
Anti-Infecciosos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas/farmacologia , Peptídeos Catiônicos Antimicrobianos , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Proteínas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA