Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4552, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941269

RESUMO

Patients with epilepsy have a high risk of developing psychiatric comorbidities, and there is a particular need for early detection of these comorbidities. Here, in an exploratory, hypothesis-generating approach, we aimed to identify microRNAs as potential circulatory biomarkers for epilepsy-associated psychiatric comorbidities across different rat models of epilepsy. The identification of distress-associated biomarkers can also contribute to animal welfare assessment. MicroRNA expression profiles were analyzed in blood samples from the electrical post-status epilepticus (SE) model. Preselected microRNAs were correlated with behavioral and biochemical parameters in the electrical post-SE model, followed by quantitative real-time PCR validation in three additional well-described rat models of epilepsy. Six microRNAs (miR-376a, miR-429, miR-494, miR-697, miR-763, miR-1903) were identified showing a positive correlation with weight gain in the early post-insult phase as well as a negative correlation with social interaction, saccharin preference, and plasma BDNF. Real-time PCR validation confirmed miR-203, miR-429, and miR-712 as differentially expressed with miR-429 being upregulated across epilepsy models. While readouts from the electrical post-SE model suggest different microRNA candidates for psychiatric comorbidities, cross-model analysis argues against generalizability across models. Thus, further research is necessary to compare the predictive validity of rodent epilepsy models for detection and management of psychiatric comorbidities.


Assuntos
Epilepsia , MicroRNAs , Estado Epiléptico , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , Epilepsia/genética , Epilepsia/metabolismo , Estado Epiléptico/genética , Estado Epiléptico/metabolismo , Biomarcadores , Hipocampo/metabolismo
2.
Eur Surg Res ; 64(1): 89-107, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35073547

RESUMO

INTRODUCTION: Chronic epilepsy models require neurosurgical procedures including depth electrode implants. The intrahippocampal kainate model is a frequently used chronic paradigm, which is based on chemoconvulsant administration and status epilepticus induction during the surgical procedure. This experimental approach raises the question of the extent to which this approach affects postsurgical recovery. In addition to the short- and long-term impact of the surgical intervention, a potential impact of highly frequent electrographic seizure events needs to be considered in the context of severity assessment. METHODS: Various behavioral, biochemical, and telemetric parameters were analyzed in four experimental groups of mice: 1st naive, 2nd with transmitter implants, 3rd with transmitter and electrode implants, and 4th with transmitter implants, electrode implants, and kainate-induced status epilepticus. RESULTS: During the early postsurgical phase, transmitter implants caused a transient impact on Mouse Grimace scores and intragroup increase of fecal corticosterone metabolites. Additional craniotomy was associated with an influence on total heart rate variability and fecal corticosterone metabolites. Heart rate and Irwin score increases as well as a prolonged increase in Mouse Grimace scores pointed to an added burden related to the induction of a nonconvulsive status epilepticus. Data from the chronic phase argued against a relevant influence of frequent electrographic seizures on behavioral patterns, fecal corticosterone metabolites, heart rate, and its variability. However, Irwin scores indicated long-term changes in some animals with increased reactivity, body tone, and Straub tail. Interestingly, selected behavioral and telemetric data from the early post-status epilepticus phase correlated with the frequency of electrographic seizure events in the chronic phase. CONCLUSION: In conclusion, our findings argue against the pronounced impact of highly frequent electrographic seizures on the well-being of mice. However, an increased level of nervousness in a subgroup of animals should be considered for handling procedures and refinement measures. In the early postsurgical phase, several parameters indicate an influence of the interventions with evidence that the nonconvulsive status epilepticus can negatively affect the recovery. Thus, the development and validation of refinement efforts should focus on this experimental phase. Finally, the datasets suggest that simple readout parameters may predict the long-term consequences of the epileptogenic insult. Respective biomarker candidates require further validation in the follow-up studies in models with subgroups of animals with or without epilepsy development.


Assuntos
Epilepsia , Estado Epiléptico , Camundongos , Animais , Ácido Caínico/efeitos adversos , Corticosterona , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente , Modelos Animais de Doenças
3.
Front Vet Sci ; 9: 930005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277074

RESUMO

Several studies suggested an informative value of behavioral and grimace scale parameters for the detection of pain. However, the robustness and reliability of the parameters as well as the current extent of implementation are still largely unknown. In this study, we aimed to systematically analyze the current evidence-base of grimace scale, burrowing, and nest building for the assessment of post-surgical pain in mice and rats. The following platforms were searched for relevant articles: PubMed, Embase via Ovid, and Web of Science. Only full peer-reviewed studies that describe the grimace scale, burrowing, and/or nest building as pain parameters in the post-surgical phase in mice and/or rats were included. Information about the study design, animal characteristics, intervention characteristics, and outcome measures was extracted from identified publications. In total, 74 papers were included in this review. The majority of studies have been conducted in young adult C57BL/6J mice and Sprague Dawley and Wistar rats. While there is an apparent lack of information about young animals, some studies that analyzed the grimace scale in aged rats were identified. The majority of studies focused on laparotomy-associated pain. Only limited information is available about other types of surgical interventions. While an impact of surgery and an influence of analgesia were rather consistently reported in studies focusing on grimace scales, the number of studies that assessed respective effects was rather low for nest building and burrowing. Moreover, controversial findings were evident for the impact of analgesics on post-surgical nest building activity. Regarding analgesia, a monotherapeutic approach was identified in the vast majority of studies with non-steroidal anti-inflammatory (NSAID) drugs and opioids being most commonly used. In conclusion, most evidence exists for grimace scales, which were more frequently used to assess post-surgical pain in rodents than the other behavioral parameters. However, our findings also point to relevant knowledge gaps concerning the post-surgical application in different strains, age levels, and following different surgical procedures. Future efforts are also necessary to directly compare the sensitivity and robustness of different readout parameters applied for the assessment of nest building and burrowing activities.

4.
Sci Rep ; 12(1): 3179, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210444

RESUMO

Electrophysiological recordings in animals constitute frequently applied techniques to study neuronal function. In this context, several authors described tethered recordings as a semi-restraint situation with negative implications for animal welfare and suggested radiotelemetric setups as a refinement measure. Thus, we here investigated the hypothesis that tethered recordings exert measurable effects on behavioral and sleep patterns in Sprague-Dawley rats. Animals were kept in monitoring glass cages either with or without a head connection to a recording cable. Saccharin preference, nest building, serum corticosterone and fecal corticosterone metabolite levels were in a comparable range in both groups. The proportion of vigilance states was not affected by the cable connection. Minor group differences were detected in bout lengths distributions, with a trend for longer NREM and WAKE stages in animals with a cable connection. However, a relevant effect was not further confirmed by an analysis of the number of sleep/wake and wake/sleep transitions. The analysis of activity levels did not reveal group differences. However, prolonged exposure to the tethered condition resulted in an intra-group increase of activity. In conclusion, the comparison between freely moving vs tethered rats did not reveal major group differences. Our findings indicate that telemetric recordings only offer small advantages vs cabled set ups, though this may differ in other experimental studies where for example anxiety- or drug-induced effects are analyzed.


Assuntos
Comportamento Animal , Eletroencefalografia/efeitos adversos , Sono , Telemetria/efeitos adversos , Vigília , Bem-Estar do Animal , Animais , Encéfalo/fisiologia , Eletrodos Implantados , Eletroencefalografia/métodos , Feminino , Ratos , Ratos Sprague-Dawley , Telemetria/métodos
5.
Sci Rep ; 12(1): 2550, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169182

RESUMO

Evidence exists that behavioral patterns only stabilize once mice reach adulthood. Detailed information about the course of behavioral patterns is of particular relevance for neuroscientific research and for the assessment of cumulative severity in genetically modified mice. The analysis considered five age groups focusing on behavioral assessments in the animals' familiar home cage environment during the adolescence phase. We confirmed age- and sex-specific differences for several of the behavioral parameters and fecal corticosterone metabolites. Interestingly, an age-dependent decline in saccharin preference was detected in female mice. Regardless of sex, relevant levels of burrowing activity were only observed during later developmental phases. The development of nest complexity following the offer of new material was affected by age in female mice. In female and male mice, an age-dependency was evident for wheel running reaching a peak at P 50. A progressive increase with age was also observed for Open field activity. The data sets provide guidance for behavioral studies and for development of composite measure schemes for evidence-based severity assessment in young mice. Except for the burrowing test, the different behavioral tests can be applied in different age groups during post-weaning development. However, age- and sex-specific characteristics need to be considered.


Assuntos
Comportamento Animal , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade da Espécie
6.
Neuroscience ; 465: 219-230, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836244

RESUMO

Experimental and clinical data suggest an impact of serotonergic signaling on seizure susceptibility and epilepsy-associated psychiatric comorbidities. Previous µPET studies revealed increased binding of the 5-HT1A receptor ligand [18F]MPPF in two rat models with spontaneous recurrent seizures. These findings raised the question whether these alterations are due to altered 5-HT1A receptor expression or a modification of extracellular serotonin concentrations. 5-HT1A receptor expression rates were quantitatively analyzed in rat brain tissue from an electrical and a chemical post-status epilepticus model. Based on the µPET findings, stereological analysis was focused on hippocampal subregions and the septum. Evaluation of 5-HT1A receptor expression in the electrical post-status epilepticus model revealed a decreased optical density in hippocampal CA3 region. In all other brain regions of interest, the analysis demonstrated comparable 5-HT1A receptor expression rates among all experimental groups in the brain regions evaluated. Moreover, 5-HT1A total receptor volume did not differ between groups. A model-specific correlation was demonstrated between 5-HT1A receptor expression and selected seizure and behavioral parameters. In conclusion, analysis in post-status epilepticus models in rats argued against widespread and pronounced alterations in 5-HT1A receptor expression. In view of previous µPET findings, the present data indicate that alterations in in-vivo receptor binding are due to a reduction in extracellular serotonin concentrations rather than changes in receptor density. Correlation analysis points to a possible link between 5-HT1A receptor expression and ictogenesis, seizure termination and behavioral patterns. However, as these findings proved to be model specific, the relevance needs to be further assessed in future studies focusing on other models and species.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Estado Epiléptico , Animais , Epilepsia do Lobo Temporal/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Ratos , Receptor 5-HT1A de Serotonina , Estado Epiléptico/diagnóstico por imagem
7.
Epilepsy Behav ; 115: 107689, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33418481

RESUMO

OBJECTIVE: Ethical decisions about an allowance for animal experiments need to be based on scientifically sound information about the burden and distress associated with the experimental procedure and models. Thereby, species differences need to be considered for recommendations regarding evidence-based severity assessment and refinement measures. METHODS: A comprehensive analysis of behavioral patterns and corticosterone or its metabolites in serum and feces was completed in kindled mice. The impact of kindling via two different stimulation sites in the amygdala and hippocampus was determined. Data were compared to those from naive and electrode-implanted groups. RESULTS: Amygdala and hippocampus kindled mice exhibited comparable behavioral patterns with increased activity in the open field, reduced anxiety-associated behavior in the elevated-plus maze, and increased anhedonia-associated behavior in the saccharin preference test. In addition, repeated stimulation of the hippocampus caused a reduction in burrowing behavior and an increase in active social interaction. Levels of corticosterone and its metabolites were not altered in serum or feces, respectively. A comparison of mouse data with findings from amygdala kindled rats confirmed pronounced species differences in behavioral patterns associated with the kindling process. SIGNIFICANCE: Taken together the findings suggest a severity classification for the mouse kindling paradigms as moderate regardless of the stimulation site. The outcome of the species comparison provides valuable guidance for species selection for studies exploring behavioral comorbidities. In this context, it is emphasized that the mouse kindling paradigms seem to be well suited for studies exploring the link between ictal events and network alterations on the one hand, and hyperactivity and anhedonia-associated behavior on the other hand. Moreover, the underlying pathophysiological mechanisms and the impact of therapeutic interventions on these behavioral alterations can be studied in these paradigms providing guidance for the clinical management of respective psychiatric comorbidities in patients.


Assuntos
Excitação Neurológica , Tonsila do Cerebelo , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Comportamento Exploratório , Humanos , Camundongos , Ratos , Convulsões
8.
EJNMMI Res ; 10(1): 112, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990819

RESUMO

BACKGROUND: Stress exposure can significantly affect serotonergic signaling with a particular impact on 5-HT1A receptor expression. Positron emission tomography (PET) provides opportunities for molecular imaging of alterations in 5-HT1A receptor binding following stress exposure. Considering the possible role of 5-HT1A receptors in stress coping mechanisms, respective imaging approaches are of particular interest. MATERIAL AND METHODS: For twelve consecutive days, Sprague Dawley rats were exposed to daily transport with a 1 h stay in a laboratory or daily transport plus 1 h restraint in a narrow tube. Following, animals were subjected to µPET imaging with 2'-methoxyphenyl-(N-2'-pyridinyl)-p-[18F]fluoro-benzamidoethylpiperazine ([18F]MPPF) and 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG). Behavioral and biochemical parameters were analyzed to obtain additional information. RESULTS: In rats with repeated transport, hippocampal [18F]MPPF binding exceeded that in the naive group, while no difference in [18F]FDG uptake was detected between the groups. A transient decline in body weight was observed in rats with transport or combined transport and restraint. Thereby, body weight development correlated with [18F]MPPF binding. CONCLUSIONS: Mild-to-moderate stress associated with daily transport and exposure to a laboratory environment can trigger significant alterations in hippocampal binding of the 5-HT1A receptor ligand [18F]MPPF. This finding indicates that utmost care is necessary to control and report transport and associated handling procedures for animals used in µPET studies analyzing the serotonergic system in order to enhance the robustness of conclusions and allow replicability of findings. In view of earlier studies indicating that an increase in hippocampal 5-HT1A receptor expression may be associated with a resilience to stress, it would be of interest to further evaluate 5-HT1A receptor imaging approaches as a candidate biomarker for the vulnerability to stress.

9.
PLoS One ; 15(5): e0230141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413036

RESUMO

Comparative severity assessment of animal models and experimental interventions is of utmost relevance for harm-benefit analysis during ethical evaluation, an animal welfare-based model prioritization as well as the validation of refinement measures. Unfortunately, there is a lack of evidence-based approaches to grade an animal's burden in a sensitive, robust, precise, and objective manner. Particular challenges need to be considered in the context of animal-based neuroscientific research because models of neurological disorders can be characterized by relevant changes in the affective state of an animal. Here, we report about an approach for parameter selection and development of a composite measure scheme designed for precise analysis of the distress of animals in a specific model category. Data sets from the analysis of several behavioral and biochemical parameters in three different epilepsy models were subjected to a principal component analysis to select the most informative parameters. The top-ranking parameters included burrowing, open field locomotion, social interaction, and saccharin preference. These were combined to create a composite measure scheme (CMS). CMS data were subjected to cluster analysis enabling the allocation of severity levels to individual animals. The results provided information for a direct comparison between models indicating a comparable severity of the electrical and chemical post-status epilepticus models, and a lower severity of the kindling model. The new CMS can be directly applied for comparison of other rat models with seizure activity or for assessment of novel refinement approaches in the respective research field. The respective online tool for direct application of the CMS or for creating a new CMS based on other parameters from different models is available at https://github.com/mytalbot/cms. However, the robustness and generalizability needs to be further assessed in future studies. More importantly, our concept of parameter selection can serve as a practice example providing the basis for comparable approaches applicable to the development and validation of CMS for all kinds of disease models or interventions.


Assuntos
Modelos Animais de Doenças , Epilepsia/fisiopatologia , Software , Animais , Variação Biológica da População , Epilepsia/patologia , Feminino , Excitação Neurológica , Locomoção , Ratos , Ratos Sprague-Dawley , Comportamento Social , Comportamento Espacial
10.
Lab Anim ; 54(1): 99-110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31665969

RESUMO

In many animal experiments scientists and local authorities define a body-weight reduction of 20% or more as severe suffering and thereby as a potential parameter for humane endpoint decisions. In this study, we evaluated distinct animal experiments in multiple research facilities, and assessed whether 20% body-weight reduction is a valid humane endpoint criterion in rodents. In most experiments (restraint stress, distinct models for epilepsy, pancreatic resection, liver resection, caloric restrictive feeding and a mouse model for Dravet syndrome) the animals lost less than 20% of their original body weight. In a glioma model, a fast deterioration in body weight of less than 20% was observed as a reliable predictor for clinical deterioration. In contrast, after induction of chronic diabetes or acute colitis some animals lost more than 20% of their body weight without exhibiting major signs of distress. In these two animal models an exclusive application of the 20% weight loss criterion for euthanasia might therefore result in an unnecessary loss of animals. However, we also confirmed that this criterion can be a valid parameter for defining the humane endpoint in other animal models, especially when it is combined with additional criteria for evaluating distress. In conclusion, our findings strongly suggest that experiment and model specific considerations are necessary for the rational integration of the parameter 'weight loss' in severity assessment schemes and humane endpoint criteria. A flexible implementation tailored to the experiment or intervention by scientists and authorities is therefore highly recommended.


Assuntos
Bem-Estar do Animal , Peso Corporal , Camundongos/fisiologia , Redução de Peso , Animais , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos C57BL
11.
Epilepsia ; 60(10): 2114-2127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31471910

RESUMO

OBJECTIVE: Considering the complexity of neuronal circuits and their epilepsy-associated alterations, epilepsy models cannot be completely replaced by in vitro experimental approaches. Decisions about ethical approval of in vivo studies require a thorough weighing of the animal's burden and the benefit regarding the expected gain in knowledge. METHODS: Based on combined behavioral, biochemical, and physiological analyses, we assessed the impact on animal well-being and condition in different phases of the pilocarpine post-status epilepticus (SE) model in rats. RESULTS: As a consequence of SE, increased levels of impairment were evident in the early postinsult phase and late chronic phase, whereas only mild impairment was observed in the interim phase. Parameters that stood out as sensitive indicators of animal distress include burrowing, which proved to be affected throughout all experimental phases, saccharin preference, fecal corticosterone metabolites, heart rate, and heart rate variability. SIGNIFICANCE: The cumulative burden with temporary but not long-lasting phases of more pronounced impairment suggests a classification of severe as a basis for laboratory-specific prospective and retrospective evaluation. Among the parameters analyzed, burrowing behavior and saccharin preference stand out as candidate parameters that seem to be well suited to obtain information about animal distress in epileptogenesis models.


Assuntos
Convulsões/diagnóstico , Estado Epiléptico/diagnóstico , Animais , Modelos Animais de Doenças , Prática Clínica Baseada em Evidências , Hipocampo/fisiopatologia , Pilocarpina , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia , Índice de Gravidade de Doença , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/fisiopatologia , Estresse Psicológico/fisiopatologia
12.
Epilepsia ; 60(8): 1539-1551, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247135

RESUMO

OBJECTIVE: Ethical approval of experiments in chronic epilepsy models requires a careful balancing of the expected gain-in-knowledge with the level of distress. Thus recommendations for evidence-based severity assessment and classification are urgently needed for preclinical epilepsy research. METHODS: Therefore, we have completed a comprehensive analysis of alterations in behavioral, biochemical, and physiological parameters in a rat electrical post-status epilepticus model. Selected parameters were repeatedly analyzed during different experimental phases to obtain information about the level of distress throughout the course of the model. RESULTS: Behavioral patterns comprised an increase in activity along with a reduction in risk assessment behavior, active social interaction, saccharin preference as well as nonessential, but evolutionary-determined behavior such as nest building and burrowing. Among the biochemical parameters, fecal corticosterone metabolites proved to be increased in different phases of the experiment. In the early post-insult phase, this increase was reflected by elevated serum corticosterone concentrations. Telemetric recordings demonstrated increases in home cage activity and heart rate in selected experimental phases but argued against relevant changes in heart rate variability. Comparison between animals with tethered or telemetric recordings including a principal component analysis revealed differences between both groups. SIGNIFICANCE: The present findings further confirm that burrowing behavior and saccharin preference might serve as valid parameters for severity assessment in chronic epilepsy models. Considering the course of alterations providing evidence for a more pronounced level of distress in the early phase following status epilepticus (SE), we suggest a classification of the electrical post-SE model as severe. This suggestion may serve as a guidance for laboratory-specific evaluations. Comparison between data from animals with tethered and telemetric recordings indicated an impact of the mode of recordings. However, further research is necessary to analyze the validity of telemetry as a putative refinement measure.


Assuntos
Convulsões/diagnóstico , Estado Epiléptico/diagnóstico , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Frequência Cardíaca , Atividade Motora , Ratos , Ratos Sprague-Dawley , Recidiva , Convulsões/metabolismo , Convulsões/fisiopatologia , Convulsões/psicologia , Índice de Gravidade de Doença , Estado Epiléptico/metabolismo , Estado Epiléptico/fisiopatologia , Estado Epiléptico/psicologia
13.
Neurobiol Dis ; 118: 9-21, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29933054

RESUMO

Psychiatric comorbidities are prevalent in patients with epilepsy and greatly contribute to the overall burden of disease. The availability of reliable biomarkers to diagnose epilepsy-associated comorbidities would allow for effective treatment and improved disease management. Due to their non-invasive nature, molecular imaging techniques such as positron emission tomography (PET) are ideal tools to measure pathologic changes. In the current study we investigated the potential of [18F]fluoro-2-deoxy-d-glucose ([18F]FDG) and 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine ([18F]MPPF) as imaging correlates of neurobehavioral comorbidities in the pilocarpine rat model of epilepsy. Findings from rats with epilepsy revealed a regional reduction in [18F]FDG uptake indicating thalamic hypometabolism. In addition, an increase in septal [18F]MPPF binding was observed in rats with spontaneous recurrent seizures. Both thalamic [18F]FDG and septal [18F]MPPF data proved to correlate with behavioral alterations including decreases in luxury behavior such as burrowing and social interaction, and changes in behavioral patterns in anxiety tests. A correlation with seizure frequency was confirmed for thalamic [18F]FDG data. Moreover, thalamic [18F]FDG and septal [18F]MPPF data exhibited a correlation with brain-derived neurotrophic factor (BDNF) serum concentrations, which were lowered in rats with epilepsy. In conclusion, µPET data from rats with pilocarpine-induced epileptogenesis indicate altered septal 5-HT1A receptor binding. Further research is necessary assessing whether septal 5-HT1A receptor binding may serve as an imaging correlate of neuropsychiatric comorbidities in epilepsy patients and for severity assessment in rodent epilepsy models. In contrast, we obtained evidence that [18F]FDG uptake also reflects the severity of epilepsy and, thus, might not constitute a biomarker with sufficient specificity for psychiatric comorbidities. Evidence has been obtained that BDNF might serve as a peripheral circulatory biomarker. Further experimental and clinical assessment is necessary for validation of the marker candidates.


Assuntos
Epilepsia/induzido quimicamente , Epilepsia/diagnóstico por imagem , Relações Interpessoais , Pilocarpina/toxicidade , Tomografia por Emissão de Pósitrons/métodos , Animais , Modelos Animais de Doenças , Epilepsia/metabolismo , Feminino , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA