Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 18(1): 580-594, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34914383

RESUMO

The growing interest in the effects of external electric fields on reactive processes requires predictive methods that can reach longer length and time scales than quantum mechanical simulations. Recently, many studies have included electric fields in ReaxFF, a widely used reactive molecular dynamics method. In the case of modeling an external electric field, the charge distribution method used in ReaxFF is critical. The most common charge distribution method used in previous studies of electric fields is the charge equilibration (QEq) method, which assumes that the system is a contiguous conductor and that charge transfer can occur across any distance. In contrast, many systems of interest are insulators or semiconductors, and long-distance charge transfer should not occur in response to a small difference in potential. This study focuses on the limitations of the QEq method in the context of water in an external electric field. We demonstrate that QEq can predict unphysical charge distributions and exhibits properties that do not converge as a function of system size. Furthermore, we show that electric fields within the recently developed atom-condensed Kohn-Sham density functional theory (DFT) approximated to the second-order (ACKS2) approach address the major limitations of electric fields in QEq. With ACKS2, we observe more physical charge distributions and properties that converge as a function of system size. We do not suggest that ACKS2 is perfect in all circumstances but rather show specific cases where it addresses the major shortcomings of QEq in the context of an external electric field.

2.
J Chem Theory Comput ; 17(6): 3237-3251, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33970642

RESUMO

Reactive force fields provide an affordable model for simulating chemical reactions at a fraction of the cost of quantum mechanical approaches. However, classically accounting for chemical reactivity often comes at the expense of accuracy and transferability, while computational cost is still large relative to nonreactive force fields. In this Perspective, we summarize recent efforts for improving the performance of reactive force fields in these three areas with a focus on the ReaxFF theoretical model. To improve accuracy, we describe recent reformulations of charge equilibration schemes to overcome unphysical long-range charge transfer, new ReaxFF models that account for explicit electrons, and corrections for energy conservation issues of the ReaxFF model. To enhance transferability we also highlight new advances to include explicit treatment of electrons in the ReaxFF and hybrid nonreactive/reactive simulations that make it possible to model charge transfer, redox chemistry, and large systems such as reverse micelles within the framework of a reactive force field. To address the computational cost, we review recent work in extended Lagrangian schemes and matrix preconditioners for accelerating the charge equilibration method component of ReaxFF and improvements in its software performance in LAMMPS.

3.
ACS Nano ; 12(2): 1664-1672, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29346734

RESUMO

A potentially attractive way to control nanoparticle assembly is to graft one or more polymers on the nanoparticle, to control the nanoparticle-nanoparticle interactions. When two immiscible polymers are grafted on the nanoparticle, they can microphase separate to form domains at the nanoparticle surface. Here, we computationally investigate the phase behavior of such binary mixed brush nanoparticles in solution, across a large and experimentally relevant parameter space. Specifically, we calculate the mean-field phase diagram, assuming uniform grafting of the two polymers, as a function of the nanoparticle size relative to the length of the grafted chains, the grafting density, the enthalpic repulsion between the grafted chains, and the solvent quality. We find a variety of phases including a Janus phase and phases with varying numbers of striped domains. Using a nonuniform, random distribution of grafting sites on the nanoparticle instead of the uniform distribution leads to the development of defects in the mixed brush structures. Introducing fluctuations as well leads to increasingly defective structures for the striped phases. However, we find that the simple Janus phase is preserved in all calculations, even with the introduction of nonuniform grafting and fluctuations. We conclude that the formation of the Janus phase is more realistic experimentally than is the formation of defect-free multivalent mixed brush nanoparticles.

4.
J Chem Phys ; 146(16): 164903, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28456215

RESUMO

Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.

5.
Phys Rev E ; 96(6-1): 063106, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347427

RESUMO

The role of an external field on capillary waves at the liquid-vapor interface of a dipolar fluid is investigated using molecular dynamics simulations. For fields parallel to the interface, the interfacial width squared increases linearly with respect to the logarithm of the size of the interface across all field strengths tested. The value of the slope decreases with increasing field strength, indicating that the field dampens the capillary waves. With the inclusion of the parallel field, the surface stiffness increases with increasing field strength faster than the surface tension. For fields perpendicular to the interface, the interfacial width squared is linear with respect to the logarithm of the size of the interface for small field strengths, and the surface stiffness is less than the surface tension. Above a critical field strength that decreases as the size of the interface increases, the interface becomes unstable due to the increased amplitude of the capillary waves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA